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• A uniform rod is subjected to a slowly increasing load

• The elementary work done by the load P as the rod 
elongates by a small dx is

which is equal to the area of width dx under the load-
deformation diagram.

workelementarydxPdU 

• The total work done by the load for a deformation x1,

which results in an increase of strain energy in the rod.

energystrainworktotaldxPU
x

 
1

0

112
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xPkxdxkxU
x

 

• In the case of a linear elastic deformation,

Strain Energy
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Strain Energy Density
• To eliminate the effects of size, evaluate the strain-

energy per unit volume,

densityenergy straindu

L
dx

A
P

V
U

x

x









1

1

0

0




• As the material is unloaded, the stress returns to zero 
but there is a permanent deformation.  Only the strain 
energy represented by the triangular area is recovered.

• Remainder of the energy spent in deforming the material 
is dissipated as heat.

• The total strain energy density resulting from the 
deformation is equal to the area under the curve to 
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Strain-Energy Density
• The strain energy density resulting from 

setting  R is the modulus of toughness.

• The energy per unit volume required to cause 
the material to rupture is related to its ductility 
as well as its ultimate strength.

• If the stress remains within the proportional 
limit,

E
EdEu x 22

2
1

2
1

0
1

1 


 

• The strain energy density resulting from 
setting  Y is the modulus of resilience.

resilience of modulus
E

u Y
Y 

2
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Elastic Strain Energy for Normal Stresses
• In an element with a nonuniform stress distribution,

energystrain   totallim
0





 
dVuU

dV
dU

V
Uu

V

• For values of u < uY , i.e., below the proportional 
limit,

energy  strainelasticdV
E

U x  
2

2

 


• Under axial loading, dxAdVAPx 


L

dx
AE
PU
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2


• For a rod of uniform cross-section,
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Elastic Strain Energy for Normal Stresses

I
yM

x 

• For a beam subjected to a bending load,

  dV
EI

yMdV
E

U x
2
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

• Setting  dV = dA dx,

dx
EI

M

dxdAy
EI
MdxdA
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• For an end-loaded cantilever beam,

EI
LPdx
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PxM
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Strain Energy For Shearing Stresses
• For a material subjected to plane shearing 

stresses,


xy

xyxy du



0

• For values of xy within the proportional limit,

G
Gu xy

xyxyxy 2

2

2
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2
1 

 

• The total strain energy is found from


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Strain Energy For Shearing Stresses

J
T

xy
 

  dV
GJ

TdV
G

U xy
2
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• For a shaft subjected to a torsional load,

• Setting  dV = dA dx,


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• In the case of a uniform shaft,
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Sample Problem 11.2

a) Taking into account only the normal 
stresses due to bending, determine the 
strain energy of the beam for the 
loading shown.

b) Evaluate the strain energy knowing 
that the beam is a W10x45, P = 40 
kips, L = 12 ft, a = 3 ft, b = 9 ft, and E
= 29x106 psi.

SOLUTION:

• Determine the reactions at A and B
from a free-body diagram of the 
complete beam.

• Integrate over the volume of the 
beam to find the strain energy.

• Apply the particular given 
conditions to evaluate the strain 
energy.

• Develop a diagram of the bending 
moment distribution.
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Sample Problem 11.2
SOLUTION:

• Determine the reactions at A and B
from a free-body diagram of the 
complete beam.

L
PaR

L
PbR BA 

• Develop a diagram of the bending 
moment distribution.

v
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PaMx
L

PbM  21
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Sample Problem 11.2

v
L

PaM

x
L

PbM




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43 in 248ksi1029

in. 108in. 36a

in. 144kips45


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• Integrate over the volume of the beam to find 
the strain energy.
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Strain Energy for a General State of Stress
• Previously found strain energy due to uniaxial stress and plane 

shearing stress.  For a general state of stress,

 zxzxyzyzxyxyzzyyxxu   2
1

• With respect to the principal axes for an elastic, isotropic body,

  

 

       distortion  todue 
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change  volume todue 
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



• Basis for the maximum distortion energy failure criteria,
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Impact Loading

• Consider a rod which is hit at its 
end with a body of mass m moving 
with a velocity v0.

• Rod deforms under impact.  Stresses 
reach a maximum value m and then 
disappear.

• To determine the maximum stress m

- Assume that the kinetic energy is 
transferred entirely to the 
structure,

2
02

1 mvUm 

- Assume that the stress-strain 
diagram obtained from a static test 
is also valid under impact loading.

 dV
E

U m
m 2

2

• Maximum value of the strain energy,

• For the case of a uniform rod,

V
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m
2
02


Jo

zv
eb

am
a.i

r



11 - 15

Example 11.06

Body of mass m with velocity v0 hits 
the end of the nonuniform rod BCD.  
Knowing that the diameter of the 
portion BC is twice the diameter of 
portion CD, determine the maximum 
value of the normal stress in the rod.

SOLUTION:

• Due to the change in diameter, the 
normal stress distribution is nonuniform.

• Find the static load Pm which produces 
the same strain energy as the impact.

• Evaluate the maximum stress 
resulting from the static load Pm
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Example 11.06

SOLUTION:

• Due to the change in diameter, 
the normal stress distribution is 
nonuniform.

E
VdV

E

mvU

mm

m

22

22

2
02

1








• Find the static load Pm which produces 
the same strain energy as the impact.

   

L
AEUP
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LP

AE
LP

AE
LPU

m
m

mmm
m

5
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5

4
22 222





• Evaluate the maximum stress resulting 
from the static load Pm
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Example 11.07

A block of weight W is dropped from a 
height h onto the free end of the 
cantilever beam.  Determine the 
maximum value of the stresses in the 
beam.

SOLUTION:

• The normal stress varies linearly along 
the length of the beam as across a 
transverse section.

• Find the static load Pm which produces 
the same strain energy as the impact.

• Evaluate the maximum stress 
resulting from the static load Pm
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Example 11.07

SOLUTION:

• The normal stress varies linearly 
along the length of the beam as 
across a transverse section.

E
VdV

E

WhU

mm

m

22

22 






• Find the static load Pm which produces 
the same strain energy as the impact.

For an end-loaded cantilever beam,

3

32

6

6

L
EIUP

EI
LPU

m
m

m
m





• Evaluate the maximum stress 
resulting from the static load Pm
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Design for Impact Loads
• For the case of a uniform rod,

V
EUm

m
2



 
     

V
EU

VLcccLcIL

cIL
EU

m
m

m
m
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6

4
12

4
124

4
12

2













• For the case of the cantilever beam

Maximum stress reduced by:
• uniformity of stress
• low modulus of elasticity with 

high yield strength
• high volume

• For the case of the nonuniform rod,

   

V
EU
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Work and Energy Under a Single Load

• Previously, we found the strain 
energy by integrating the energy 
density over the volume. 
For a uniform rod,

 
AE

LPdxA
E
AP

dV
E

dVuU

L

22

2
2

1

0

2
1

2







 


• Strain energy may also be found from 
the work of the single load P1,


1

0

x
dxPU

• For an elastic deformation, 

112
12

12
1

00

11

xPxkdxkxdxPU
xx

 

• Knowing the relationship between 
force and displacement,
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Work and Energy Under a Single Load

• Strain energy may be found from the work of other types 
of single concentrated loads.

EI
LP

EI
LPP

yPdyPU
y

63

32
1

3
1

12
1

112
1

0

1













 

• Transverse load

EI
LM

EI
LMM

MdMU

2

2
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1
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1









  


• Bending couple

JG
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TdTU
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2
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

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



  


• Torsional couple
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Deflection Under a Single Load
• If the strain energy of a structure due to a 

single concentrated load is known, then the 
equality between the work of the load and 
energy may be used to find the deflection.

lLlL BDBC 8.06.0 

From statics,
PFPF BDBC 8.06.0 

From the given geometry,

• Strain energy of the structure,

    
AE

lP
AE

lP

AE
LF

AE
LFU BDBDBCBC

2332

22

364.0
2
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22








• Equating work and strain energy,
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LPU
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Sample Problem 11.4

Members of the truss shown consist of 
sections of aluminum pipe with the 
cross-sectional areas indicated.  Using 
E = 73 GPa, determine the vertical 
deflection of the point E caused by the 
load P.

SOLUTION:

• Find the reactions at A and B from a 
free-body diagram of the entire truss.

• Apply the method of joints to 
determine the axial force in each 
member.

• Evaluate the strain energy of the 
truss due to the load P.

• Equate the strain energy to the work 
of P and solve for the displacement.Jo
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Sample Problem 11.4
SOLUTION:

• Find the reactions at A and B from a free-body 
diagram of the entire truss.

821821 PBPAPA yx 

• Apply the method of joints to determine the 
axial force in each member.

PF

PF

CE

DE

8
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8
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0
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DE

8
21

4
5



 0ABF

Jo
zv

eb
am

a.i
r



11 - 25

Sample Problem 11.4

• Evaluate the strain energy of the 
truss due to the load P.

 2
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29700
2
1

2
1

2

P
E

A
LF

EEA
LFU

i
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i
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

 

• Equate the strain energy to the work by P
and solve for the displacement.
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Work and Energy Under Several Loads
• Deflections of an elastic beam subjected to two 

concentrated loads,

22212122212

21211112111

PPxxx

PPxxx









• Reversing the application sequence yields

 2
1111221

2
2222

1 2 PPPPU  

• Strain energy expressions must be equivalent. 
It follows that (Maxwell’s reciprocal 
theorem).

 2
2222112

2
1112

1 2 PPPPU  

• Compute the strain energy in the beam by 
evaluating the work done by slowly applying 
P1 followed by P2,
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Castigliano’s Theorem

 2
2222112

2
1112

1 2 PPPPU  

• Strain energy for any elastic structure 
subjected to two concentrated loads,

• Differentiating with respect to the loads,

2222112
2

1212111
1

xPP
P
U

xPP
P
U






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



• Castigliano’s theorem: For an elastic structure 
subjected to n loads, the deflection xj of the 
point of application of Pj can be expressed as

      and    
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Deflections by Castigliano’s Theorem
• Application of Castigliano’s theorem is 

simplified if the differentiation with respect to 
the load Pj is performed before the integration 
or summation to obtain the strain energy U.

• In the case of a beam,
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Sample Problem 11.5

Members of the truss shown 
consist of sections of aluminum 
pipe with the cross-sectional areas 
indicated.  Using E = 73 GPa, 
determine the vertical deflection of 
the joint C caused by the load P.

• Apply the method of joints to determine 
the axial force in each member due to Q.

• Combine with the results of Sample 
Problem 11.4 to evaluate the derivative 
with respect to Q of the strain energy of 
the truss due to the loads P and Q.

• Setting Q = 0, evaluate the derivative 
which is equivalent to the desired 
displacement at C.

SOLUTION:

• For application of Castigliano’s theorem, 
introduce a dummy vertical load Q at C.  
Find the reactions at A and B due to the 
dummy load from a free-body diagram of 
the entire truss.
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Sample Problem 11.5
SOLUTION:

• Find the reactions at A and B due to a dummy load Q
at C from a free-body diagram of the entire truss.
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4
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• Apply the method of joints to determine the axial 
force in each member due to Q.
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Sample Problem 11.5

• Combine with the results of Sample Problem 11.4 to evaluate the derivative 
with respect to Q of the strain energy of the truss due to the loads P and Q.
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• Setting Q = 0, evaluate the derivative which is equivalent to the desired 
displacement at C.
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