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Energy Methods




Strain Energy
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P =kx

A uniform rod 1s subjected to a slowly increasing load

The elementary work done by the load P as the rod
clongates by a small dx is

dU = P dx =elementary work

which 1s equal to the area of width dx under the load-
deformation diagram.

The rotal work done by the load for a deformation x,,

X
U= j P dx = total work = strain energy

0
which results in an increase of strain energy in the rod.

In the case of a linear elastic deformation,

X
U = jkxdx:%kxlz =1 PX
0




Strain Energy Density

» To eliminate the effects of size, evaluate the strain-
energy per unit volume,

U 'P dx
vV JAL
0
€1
U= jax de = strain energy density
0

 The total strain energy density resulting from the
deformation is equal to the area under the curve to &,.

» As the material i1s unloaded, the stress returns to zero
but there is a permanent deformation. Only the strain
energy represented by the triangular area is recovered.

« Remainder of the energy spent in deforming the material
1s dissipated as heat.
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Strain-Energy Density
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The strain energy density resulting from
setting &, = &p 1S the modulus of foughness.

The energy per unit volume required to cause
the material to rupture is related to its ductility
as well as its ultimate strength.

If the stress remains within the proportional
limit,
| 2 2
Eeif o
U= [Eg deg, = —A =—1
g PP T2E

The strain energy density resulting from
setting o, = oy.1s the modulus of resilience.
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Undeformed posation
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Displacement
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Elastic Strain Energy for Normal Stresses

* In an element with a nonuniform stress distribution,
AU dU
AV 0 AV dV

-
I
=
=
I

U= ju dV =total strain energy

* For values of u< uy, 1.e., below the proportional
limit,
o
U = | —=dV =elastic strain ener
J52 0y

e Under axial loading, oy =P/A  dV = Adx

L

_(Ez—dx

* For a rod of uniform cross-section,
_PAL
2AE
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Elastic Strain Energy for Normal Stresses

» For a beam subjected to a bending load,

U= j“xdv j 22dv

2E|?

» Setting dV =dA dkx,
L

[ MYy 2EI2 " dAdx - jZE;{ jyszj

M 2
jﬁdx
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* For an end-loaded cantilever beam,

M =-Px
Lpzxz p2|3
= dx =——
p 2El 6El
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Strain Energy For Shearing Stresses

» For a material subjected to plane shearing

stresses,
V' xy
0

* For values of 7, within the proportional limit,

2

1~.2 _ 1 Txy
u=1Gy3 =1r, =2
227xy T2 txy Vxy G

e The total strain energy 1s found from
U =[udv

Uty 2

— .Tﬂdv
4 2G
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Strain Energy For Shearing Stresses

» For a shaft subjected to a torsional load,

2 2 2
.
U= ﬂdV:jT 'Ozdv
2G 2GJ

« Setting dV =dA dx,

L > L
U:HT 'Oszdx— T . j 24A |dx
292G 12GJ?( 4
2GJ
0

* In the case of a uniform shatft,
2
u-1 L
2GJ
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Sample Problem 11.2

SOLUTION:

» Determine the reactions at A and B
from a free-body diagram of the
complete beam.

* Develop a diagram of the bending

E L g moment distribution.

a) Taking into account only the normal * Integrate over the volume of the
stresses due to bending, determine the beam to find the strain energy.
strain energy of the beam for the
loading shown. * Apply the particular given

conditions to evaluate the strain

b) Evaluate the strain energy knowing
that the beam is a W10x45, P=40
kips, L=12ft, a=3ft, b=9 ft,and F

= 29x10° psi.

energy.
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Sample Problem 11.2

: SOLUTION:

» Determine the reactions at A and B
from a free-body diagram of the
complete beam.

_Pb Pa

Ry = -
L BT L

Ra

e Develop a diagram of the bending
moment distribution.

=P—bx Mzz%v

M
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Sample Problem 11.2

* Integrate over the volume of the beam to find
the strain energy.

b 12
le dx+j M2 gv
2El 2El
o 8 e b
Over the nortion AD 1 I(Pb j . j(Paszdx
ver the portion , 2EI L 2E| ) L
Pb
Mj=—X 2(12.3 23 2.2,2
L 1 P b®a’ a‘b P<a“b
. = 5 + = >-(a+b)
Over the portion BD, 2El L 3 3 6EIL
v, - P, T
L U=
6EIL
P = 45Kips L =144 in. y __ (40kips)*(36in)*(108in)’
g b 108in 6(29x10° ksi |248in* [144 in)
M E=29x10°ksi | =248in" U =3.891n - kips

._..--"'._.:-__;-_..'_-I'.fi" """I I'» E’ﬂj'— ll"'.-r"'u-.-




Strain Energy for a General State of Stress

« Previously found strain energy due to uniaxial stress and plane
shearing stress. For a general state of stress,

_1
« With respect to the principal axes for an elastic, 1sotropic body,

1 2
Ga + O'b +0§f —2v(oq0p + oo + 0:03)

=UV+Ud

1-2v
T TGE

(0q +0p + 0 )2 = due to volume change

R (o4 -0 )2 +(op — 0 )2 +(op — 0oy )2 ] = due to distortion

u —
47126

 Basis for the maximum distortion energy failure criteria,

2
ug < (ug )Y 6G for a tensile test specimen
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Impact Loading

Area = A

()

* Consider a rod which is hit at its
end with a body of mass 71 moving
with a velocity v,

* Rod deforms under impact. Stresses

| p— ..l' 5
e e B | o el

* To determine the maximum stress o,

- Assume that the kinetic energy is
transferred entirely to the

structure,
_1my2
Un=5mvg

- Assume that the stress-strain
diagram obtained from a static test
is also valid under impact loading.

e Maximum value of the strain energy,

2
_[9m
um_szdv

* For the case of a uniform rod,

2UE  |mv3E
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Example 11.06

SOLUTION:

* Due to the change in diameter, the
normal stress distribution 1s nonuniform.

 Find the static load P, which produces
the same strain energy as the impact.

Area = 4A

 Evaluate the maximum stress
resulting from the static load 2,

Body of mass m with velocity v hits
the end of the nonuniform rod BCD.
Knowing that the diameter of the
portion BC'is twice the diameter of
portion CD, determine the maximum
value of the normal stress in the rod.

o
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Example 11.06

 Find the static load P, which produces
the same strain energy as the impact.
_Pa(L/2) Pa(L2) _ 5 Rl

m = + =
AE 4AE 16 AE

_\/16UmAE
TS L

1
oL
1

Area = 4A

 Evaluate the maximum stress resulting

SOLUTION: from the static load P,
* Due to the change in diameter, P,
the normal stress distribution 1s Om = A
nonuniform. ~ [I6UE
) _ [0
U = % mvg 5 AL

2
2 2 8mV0E

om omVv =, |-

— [Om gy » Om¥. \
2E 2E > AL
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Example 11.07

SOLUTION:

» The normal stress varies linearly along
the length of the beam as across a
transverse section.

 Find the static load P, which produces
the same strain energy as the impact.

o Evaluate the maximum stress

A block of weight W 1s dropped from a resulting from the static load P,
height h onto the free end of the

cantilever beam. Determine the
maximum value of the stresses in the
beam.

| p— ..l' 5
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Example 11.07

* Find the static load P, which produces
the same strain energy as the impact.

For an end-loaded cantilever beam,
_ Pl
M 6El

oU . El
P = ||
L

 Evaluate the maximum stress
resulting from the static load P,

SOLUTION:

e The normal stress varies linearly
along the length of the beam as

across a transverse section. |
‘M ‘mc PnlLC
Om = —

Up =Wh | |
6UnE [ 6WhE

_ ;’_Edv ;thLE :\/m_\/m
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Design for Impact Loads

* For the case of a uniform rod,

12U E

e For the case of the nonuniform rod,

__ [16UnE
m=\s5 AL

Area = V =4A(L/2)+A(L/2)=5AL/2

>

Maximum stress reduced by: o = 6U mE
« uniformity of stress L('/ C )
low modulus of elasticity with |_(| /CZ): L(% s /Cz): %(ﬂch): i
nigh yield strength
__ high volume Om = 24L\J/m E
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Work and Energy Under a Single Load

 Strain energy may also be found from
the work of the single load 7,

e For an elastic deformation,

. : Xl Xl
* Previously, we found the strain U= ]‘ P dx = J kx dx = %kxl2 =1Rx
energy by integrating the energy 0 0

density over the volume.

For a uniform rod : - :
u ’ * Knowing the relationship between

2 .
U = J udy = J‘ % qv force and displacement,
2E AL
L
L 2 2 AE
AP pgy B 2
7 2E 2AE 1 ALY AL
U =21 AE )T 2AE
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Work and Energy Under a Single Load

 Strain energy may be found from the work of other types
of single concentrated loads.

e Transverse load * Bending couple » Torsional couple

P,

T

=

Yi &, @
U=[Pdy=1Ry, U=[Mdo=1mpg U=[Tdg=1T4

0 0 0

(R R Lo (ML) MEL o (TL) TAL

27 3E1 | 6EI 2 El E| 2\ JG ) 206G
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Deflection Under a Single Load

« If the strain energy of a structure due to a
single concentrated load 1s known, then the
equality between the work of the load and
energy may be used to find the deflection.

 Strain energy of the structure,

2 2
_ Fsclec , Faplep
2AE 2AE

2 2
| P|[06 08)} _0364P]
From the given geometry, 2AE

Lgc =0.61 Lgp =0.8l

» Equating work and strain energy,
From statics, P2L

PL_ 1
Fac =+0.6P Fgp =—0.8P U =0.364"F =2PB

Pl
0.728—
YB = AE
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Sample Problem 11.4

P
—

0.6 m

Members of the truss shown consist of
sections of aluminum pipe with the
cross-sectional areas indicated. Using
E =173 GPa, determine the vertical
deflection of the point £ caused by the
load P.

e

| = p— ..l'
r o i ot P 1 o
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SOLUTION:

 Find the reactions at A and B from a
free-body diagram of the entire truss.

« Apply the method of joints to
determine the axial force in each
member.

 Evaluate the strain energy of the
truss due to the load P.

» Equate the strain energy to the work
of Pand solve for the displacement.




Sample Problem 11.4

SOLUTION:

* Find the reactions at A and B from a free-body
diagram of the entire truss.

Ac=-21P/8 A =P  B=21P/8

B=21P/8§ B
* Apply the method of joints to determine the
axial force in each member.
P
Fop Fac C
T e T i
padl : :
-~ 15 |
Fpg '
__17 _
— —§ P FAC =+
= _|_1_5 P FCD =0

1 - ) ‘.I'r 5
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Sample Problem 11.4

P = 40 kN - F b 1 e Fi L,
E ]
T AB 0 0.8 500 X 107 0
osm  AC +15P/8 0.6 500 X 107° 4219P*
i AD +5P/4 1.0 500 X 10 3 125P2
BD —21P/8 0.6 1000 X 10°° 4 134pP*
CD 0 0.8 1000 X 107 0
L - CE +15P/8 1.5 500 X 10°° 10 547 P>
e L5m DE —17P/8 1.7 1000 X 1076 7 677P*

« Evaluate the strain energy of the ¢ Equate the strain energy to the work by P

truss due to the load 2. and solve for the displacement.
Z Z Fi2 Li % PyE =U
IAE  2E -
A‘ A oY _2 29700P*
:i(29700P2) E7p TP 2E
2E
3 3
o [29.7x103 Ja0x10%) g et

73x10°
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Work and Energy Under Several Loads

A g * Deflections of an elastic beam subjected to two
____________ concentrated loads,
X| = X1+ X2 =P +apP,

Xy =Xo1+Xo2 =P +ar P

« Compute the strain energy in the beam by
evaluating the work done by slowly applying
P, followed by 2,,

U =%(0511|312 + 201, P +0522P22)

« Reversing the application sequence yields

U =%(0522P22 +2a71PR +0!11|312)

 Strain energy expressions must be equivalent.
It follows that a,=a,, (Maxwell’s reciprocal
theorem).

1 - ) .J:- 5
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7.2 Principle of Virtual Work

The principle of virnwal work, which was introduced by John Bernoulli in
1717, provides a powerfil analvtical tool for many problems of stroctural
mechanics, In this section, we study two formulations of this principle,
namely, the principle of virtual displacements for rigid bodies and the
principle of virtual forces for deformable bodies. The latter formulation is
wed in the following sections to develop the method of virteal work,
which is considerad to be one of the most general methods for determin-
ing deflections of structures,

f}:dy:,uﬂwuﬁ'ﬁrfhﬂ; 11 - 27




Principle of Virtual Displacements for Rigid Bodies

The principle of virtwal displacements for rigid bodies can be stated as
follows:

If a ngid body 15 1n equiibrium under a system of forces and o 1t 15 sub-
jected to any small virtual ngd-body displacement, the virtual work done
by the external forees 1s zero.

The term virtual simply means imaginary, not real. Consider the
beam shown in Fig. 7.2(a). The free-body diagram of the beam is shown
in Fig. 7.2(b), in which P, and P, represent the components of the ex-
ternal load P in the x and y directions, respectively.

MNow, suppose that the beam is given an arbitrary small virteal rigid-
body displacement from its initial equilibrium position 4 BC to another
position 4'B'C’, as shown in Fig. 7.2(c). As shown in this figure, the
total virtual rigid-body displacement of the beam can be decomposed
into translations Aqy and Ay in the x and y directions, respectively, and
a rotation #, about point 4. Note that the subscript v is used here to
identify the displacements as virtual quantities. As the beam undergoes
the virtual displacement from position 4BC W positon A'B'C, the
forces acting on it perform work, which is called virfwal work. The total

-._-e.:",',;{!.-:..rhu'ﬂ-'lﬂ.r.-ﬁr-r_r'hl:-.r

(b

Wirtual displaced position

18,
Initizl
cquilibriwm o8
position I .-j.,r
) P
:‘h—-—% =4 A C-—::::
ﬂ'r
L

(e}
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virtual work, W, performed by the external forces acting on the beam
can be expressed as the sum of the virtual work W, and W, done during
translations in the x and y directions, respectively, and the virtual work
W, done during the rotation; that is,

Wi = Wi + ui'y + W {T-?}

During the virmal translations A, and Ay, of the beam, the virtual
work done by the forces is given by

Woe = Ahoe — Py = (A; = P)A = (D F)A.  (78)
and
Wy = 4ylyy = Phy + Cl g = (4y = By + C))Agy = (L FJAy  (79)

(see Fig. 7.2(c)). The virtual work done by the forces during the small
virtual rotation £, can be expressed as

W, = —Py(ab,) + C,(L,) = (~aP, + LC)0, = (T M), (7.10)

By substituting Eqs. (7.8) through (7.10) into Eq. (7.7), we write the
total virtual work done as

Wie = o Fo)Ap + (Eﬂ'}‘&w +(3 M) (7.11)

Becanse the beam is in equilibriom, ¥ F =0, F=0,and ¥ M4 =
therefore, Eq. (7.11) becomes

We =0 (7.12)

which is the mathematical statement of the principle of virtual displace-
ments for rigid bodies.

Principle of Virtual Forces for Deformable Bodies

The principle of virtual forces for deformable bodies can be stated as
follows:

If a deformable structure is in equilibrium under a virtual system of forces
(and couples) and if it 1s subjected to any small real deformation consistent
with the support and continuity conditions of the structure, then the virtual
external work done by the virtual external forces (and couples) acting
through the real external displacements (and rotations) & equal to the vir-
tual intemal work done by the virtual intemal forces (and couples) acting
through the real internal displacements [and rotations).

In this statement, the term virtual is associated with the forces to
indicate that the force system is arbitrary and does not depend on the
action causing the real deformation.

To demonstrate the validity of this principle, consider the two-
member truss shown in Fig. 7.3(a). The truss is in equilibrium under the
action of a virtual external force F, as shown. The free-body diagram of
joint C of the truss is shown in Fig. 7.3(b). Since joint C is in equilibrium,

11-29
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the virmal external and internal forces acting on it must satisfy the fol-
lowing two equilibrium equations:

Y FRE=0 P -Fuceosth—- Farcosfz=0
: . (7.13)
EF}.ZH —Foycsinty + Fgeosinfly =0
in which F.ic and Fope represent the virtual internal forces in members
AC and BC, respectively, and ) and th denote, respectively, the angles of
inclination of these members with respect to the horizontal (Fig. 7.3(a)).
Now, let us assume that joint C of the truss is given a small real dis-
placement, A, to the right from its equilibrium position, as shown in
Fig. 7.3(a). Note that the deformation is consistent with the support
conditions of the truss: that is, joints 4 and 8, which are attached to sup-
ports, are not displaced. Because the virtual forces acting at joints 4 and
B do not perform any work, the total virtual work for the truss (W) is
equal to the algsbraic sum of the work of the virtual forces acting at joint
C: that is,

W,=F A= FME‘{-& COs E|} - F,ﬂ-f{ﬂ. ﬁﬂsﬂz}
ar
W, = (P, = Fuccosll) = Foae cosith)A (7.14)

As indicated by Eq. (7.13), the term in the parentheses on the rght-hand
side of Eq. (7.14) is zero; therefore, the total virmal work is B, =0,
Thus, Eq. (7.14) can be expressed as

FA= F‘\.dﬁ'{ﬂ. cOs ﬁ|} + ﬂ.xl{ﬂ Ci08 51} {?.] 5}

in which the quantity on the lefi-hand side represents the virmual external
work (W) done by the virmal external force, P, acting through the
real external displacement, A. Also, realizing that the terms A cos fh and
Acos fr are equal to the real intermal displacements (elongations) of
members AC and BC, respectively, we can conclude that the right-hand
side of Eq. (7.15) represents the virtual internal work (W) done by the
virmal internal forces acting throwgh the real internal displacements; that is

Whoe = Wi (7.16)

11 - 30




which is the mathematical statement of the principle of virtual forces for
deformable bodies.

It should be realized that the principle of viriual forees as described
here is applicable regardless of the canse of real deformations; that is, de-
formations doe to loads, temperature changes, or any other effect can be
determined by the application of the principle. However, the deformations
must be small enough so that the virmal forees remain constant in mag-
nitide and direction while performing the virmal work. Also, although
the application of this principle in this text is limited to elastic stroctures,
the principle is valid repardless of whether the strucmre is elastic or not.

The method of virtual work is based on the principle of virtual
forces for deformable bodies as expressed by Eq. (7.16), which can be
rewritlen as

virtual external work = virtual internal work (7.17)

or, more specifically, as

Virtual system

E(mﬂ&ﬁmm) - E( @mmmmm)

Real system (7.18)

in which the terms forces and displacements are used in a general sense
and inchede moments and rotations, respectively. Note that because the
virtual forces are independent of the actions causing the real deforma-
tion and remain constant during the real deformation, the expressions of
the external and internal virtual work in Eq. (7.18) do not contain the
factor 1/2.

As Eg. (7.18) indicates, the method of virtual work employs two
separate systems: a virtual force system and the real system of loads (or
other effects) that cause the deformation to be determined. To determine
the deflection (or slope) at any point of a structure, a virtual force system
is selected so that the desired deflection (or rotation) will be the only un-
known in Eg. (7.18). The explicit expressions of the virtual work method
to be used for computing deflections of trusses, beams, and frames are
developed in the following three sections.

7.3 Deflections of Trusses by the Virtual Work Method

To develop the expression of the virmal work method that can be used to
determine the deflections of trusses, consider an arbitrary statically de-
terminate truss, as shown in Fig. 7.4(a). Let us assume that we want to
determine the vertical deflection, A, at joint B of the truss due to the
given external loads P and Ps. The truss is statically determinate, so the
axial forces in its members can be determined from the method of joints
described previously in Chapter 4. If F represents the axial force in an
arbitrary member j (e.g., member CF in Fig. 7.4(a)) of the truss, then

oy f}fdy:gk;ﬂflﬂ;Tﬁr—Lr'.Lfﬂa 11 - 31
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{a} Real System

b
- Member f

AG. 7.4

() Viral System

[from mechanies of paterials) the axial deformation, 4, of this member is
given by
FL

i=F

(7.19)

in which L, 4, and E denote, respectively, the length, cross-sectional area,
and modulos of elasticity of member J.

To determine the vertical deflection, A, at joint B of the truss, we se-
lect a virtual system consisting of 2 wnit load acting at the joint and in the
direction of the desired deflection, as shown in Fig. 7.4(b). Mote that the
[downward) sense of the unit load in Fig. 74(b) is the same as the assumed
sense of the desirad deflection A in Fig. 7.4(a). The forces in the truss
members doe to the virmal unit load can be determined from the method
of joints. Let Fy denote the virtual force in member . Next, we subject the
truss with the virtual unit load acting on it (Fig. 7.4(b)) to the deforma-
tions of the real loads (Fig. 7.4(a)). The virtual external work performed
by the virtual unit load as it goes through the real deflection A is equal to

Wae = 1{A) (7.20)

To determine the virtual internal work, let us focus our attention on
member f (member CD in Fig. 7.4). The virteal internal work done on
member f by the virtual axial force F,, acting through the real axial de-
formation &, is equal to F.é. Therefore, the total virtual internal work
done on all the members of the truss can be written as

W= S F.(9) (7.21)

By equating the virtual external work (Eq. (720)) to the virtual in-
ternal work (Eq. (7.217) in accordance with the principle of virmeal forces
for deformable bodies, we obtain the following expression for the method
of virmal work for trss deflecti ons:

1({A) = T F(8) (7.:22)

When the deformations are caused by external loads, Eq. (7.19) can
be substituted into Eq. (7.22) to obtain

um=za@% (723)

Because the desired deflection, A, is the only unknown in Eq. (7.23), its
value can be determined by solving this equation.

Temperature Changes and Fabrication Errors

The expression of the virtual work method as given by Eq. (7.22) is quite
general in the sense that it can be wsed to determine truss deflections
due to temperature changes, fabrication errors, and any other effect for
which the member axial deformations, &, are either known or can be
evalmated beforehand.
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The axial deformation of a tross member j of length L due 0 a
change in temperature (AT) is given by

§=a(AT)L (7.24)

in which 2 denotes the coefficient of thermal expansion of member §. Sub-
stiating Eq. (7.24) into Eq. (7.22), we obtain the following expression:

1{A) = ¥ F,a(AT)L (7.25)

which can be wsed to compute tross deflections due to the changes in
temperature,

Truss deflections due to fabrication errors can be determined by
simply substituting changes in member lengths due to fabrication errors
for 4 in Eq. (7.22).

Procedure for Analysis

The following step-by-step procedure can be used to determine the de-
flections of trusses by the viriual work method.

1. Rea System If the deflection of the truss to be determined is
caused by external loads, then apply the method of joints and/
or the method of sections to compute the (real) axial foroes [ F)
in all the members of the truss. In the examples given at the end
of this section, tensile member forces are considered to be pos-
itive and vice versa. Similarly, increases in temperature and
increases in member lengths due to fabrication errors are con-
sidered 1o be positive and vice versa.

2. Virtuad System Remove all the given (real) loads from the
truss; then apply a unit load at the joint where the deflection is
desired and in the direction of the desired deflection to form the
virtual force system. By uwsing the method of joints and/or the
method of sections, compute the virteal axial forces (F,) in all
the members of the truss. The sign convention used for the vir-
tual forces must be the same as that adopted for the real forces
in step 1 that is, if real tensile forees, emperature increases, or
member elongations due to fabrication errors were considered
as positive in step 1, then the virtual tensile forces must also be
considered to be positive and vice versa.

3. The desired deflection of the truss can now be determined by
applying Eq. (7.23) if the deflection is due to external loads,
Eq. (7.25) if the deflection is caused by temperature changes, or
Eq. (7.22) in the case of the deflection due to fabrication errors.
The application of these virtual work expressions can be facili-
tated by arranging the real and virtual quantities, computed in
steps 1 and 2, in a tabular form, as illustrated in the following
examples. A positive answer for the desired deflection means
that the deflection oocurs in the same direction as the unit load,
whereas a negative answer indicates that the deflection oocurs
in the direction opposite to that of the unit load.
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Procedure for Analysis

The following step-by-step procedure can be used to determine the de-
flections of trusses by the virneal work method.

1.

Real System 1f the deflection of the truss to be determined is
caused by external loads, then apply the method of joints and/
or the method of sections to compute the (real) axial forces (F)
in all the members of the truss. In the examples given at the end
of this section, tensile member forces are considered to be pos-
itive and vice versa. Similarly, increases in temperature and
increases in member lengths due to fabrication errors are con-
sidered to be positive and vice versa.

Virtual System Remove all the given (real) loads from the
truss; then apply a unit load at the joint where the deflection is
desired and in the direction of the desired deflection to form the
virtual force system. By wsing the method of joints and/or the
method of sections, compute the virtual axial forces (F,) in all
the members of the truss. The sign convention used for the vir-
tual forces must be the same as that adopted for the real forces
in step 1; that is, if real tensile forces, temperature increases, or
member elongations due to fabrication errors were considered
as positive in step 1, then the virtual tensile forces must also be
considered to be positive and vice versa.

The desired deflection of the truss can now be determined by
applying Eq. (7.23) if the deflection is due to external loads,
Eq. (7.25) if the deflection is caused by temperature changes, or
Eq. (7.22) in the case of the deflection due to fabrication errors.
The application of these virtual work expressions can be facili-
tated by arranging the real and virmal quantities, computed in
steps 1 and 2, in a tabular form, as illustrated in the following
examples. A positive answer for the desired deflection means
that the deflection occurs in the same direction as the umit load,
whereas a negative answer indicates that the deflection occurs
in the direction opposite to that of the unit load.
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Determine the horizontal deflection at joint © of the truss shown in Fig. 7.5(a) by the virtual work method.

Solution

Real System. The real system consists of the loading given in the problem, as shown in Fig. 7.5(h). The member axinl
forces due to the real loads (F) obtained by using the method of jomts are also depicted in Fig. 7.5(b).

Virmal System. The virtual system consists of a mit (1-k) load applied n the hormontal direction at joint C, s shown
m Fig. 7.5(c). The member axial forces due to the 1-k virtual load (F,) are determined by applying the method of joints.
These member forces am also shown in Fig. 7.5(c).

| T

A=6iﬂ;l 50 L]
k] (b) Real System — F Forces
i 1k

AG. 75 {c) Virtual System — F, Forces
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Horizontal Deflection at C, A~ To faalitate the computation of the desired defloction, the real and virtual member forces
are tabulated along with the member lengths (L), as shown in Table 7.1. As the values of the cross-ssctional area, 4, and
modulus of elasticity, £, are the same for all the members, these are not included in the table. Mote that the same sign
comvention is used for both real and virtual systems that is, in both the third and the fourth columns of the table, tenale
fomes are entered as positive numbers and compressive forces as negative numbers. Then, for each member, the quantity
F,(FL) 1s computed, and its value is entered in the fifth column of the table.

The algebraic sum of all of the entries in the fifth colomn, 3 F, (FL), is then determined, and its valoe is recorded at
the bottom of the fifth column, as shown. The total virtual internal work done on all of the members of the tross & gven by

1
"ﬂl = EEF. [:.FL]

The virtual external work done by the 1-k load acting through the desired horizontal deflection at €, Ac, is
Wie = (1 kjAg

Finally, we determine the desired deflection A by equating the virtual external work to the virtual internal work
and solving the resulting equation for Ap as shown in Table 7.1. Mote that the positive answer for A indicates that
joint C deflects to the right, in the direction of the wnit load.

TAELE 7.1
Member L (in) FiK) F. () FFL) (ki)
AB 48 315 “12s 2250
AC 180 6.5 375 421875
BC 156 975 —325 494325
YE(FL) = 93870
1(A¢) = g L F(FL)
.
(1 k)Ac = (lu,;::’ﬂzﬁi;.Zi; )
Ac=156in.
Ap=156in. — Ans.

Determine the horizontal deflection at joint & of the truss shown in Fig. 7.6(a) by the virtual work method

Solution
Real System. The real system consists of the loading given in the problem, as shown in Fig. 7.6(b). The member axial
forces due to the real loads (F) obtained by using the method of joints are also shown in Fig. 7.6(h).

Virtual System. The virtual system consists of a unit (1-k) load applied in the horizontal direction at joint &, as shown
m Fig. 7.6(c). The member axial forces due to the 1-k virtual load (F,) are also depicted in Fig. 7.6(c).

comnmund
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Horizontal Deflection at O, A~ Tofachtate the computation of the desired defloction, the real and virtual member forces
are tabulated along with the member lengths (L), as shown in Table 7.1, As the values of the cross-sectional area, A, and
modulus of elasticity, E, are the same for all the members, these are not included in the table. Note that the same sign
comvention is used for both real and virtual systems that 15, m both the third and the fourth columns of the table, tenale
fomes are entered as positive numbers and compressive forces as negative numbers, Then, for each member, the quantity
F,(FL) iz computed, and its value is entered in the fifth column of the table.

The algebraic sum of all of the entries in the fifth column, 37 F, (FL], 15 then determined, and 1ts value 15 recorded at
the bottom of the fifth column, as shown. The total virtual internal work done on all of the members of the truss & given by

Wi = 2= S F.(FL)

The virtual external work done by the 1-k load acting through the desired horzontal deflection at C, Ac, is
W= (1 K)Ac-

Finally, we determine the desired deflection A - by equatmg the virtual external work to the virtual internal work
and solving the resulting equation for A as shown in Table 7.1. Mote that the positive answer for A indicates that
joint C deflects to the right, in the direction of the unit load.

TABLE TA
R L (i) Flk) F. ) F.(FL) (k2- n.)
AB a8 375 _1.25 2250
AC 180 62.5 3.7 42,1875
BC 156 _97.5 _3.25 49,4325
5 F.(FL) = 93870
1(Ac) = gy LR (FL)
o
(1K) Ae = (m,;;:’ﬂ:?i;ﬂ; )
Ac=156in.
e Ans.

Determine the horizontal deflection at joint  of the truss shown in Fig. 7.6(a) by the virtual work method.

Solution
Real System. The real system consists of the loading given in the problem, as shown in Fig. 7.6(b). The member axial
forces due to the real loads (F) obtained by wsing the method of jomts are also shown in Fig. 7.6(h).

Virtwal System. The virtual system consists of a wnit (1-k) load applied in the horzontal direction at joint (7, as shown
m Fig. 7.6(c). The member axial forces due to the 1-k virtual load (F,) arc also depicted in Fig. 7.6(c).

o e
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Horizontal Deflection at €, Az To facilitate the computation of the desired deflection, the real and viriual member forces
are tabulated along with the lengths (L) and the cross-sectonal arcas (A) of the members, as shown in Table 7.2 The
modnius of elastaty, £, is the same for all the members, 50 its value 15 not incduded in the table. Mote that the same sign
comvention is ussd for both real and virtnal systems; that is, in both the fourth and the fifth columns of the table, tenale
fomes are entered as positive numbers, and compressive foroes as negative numbers, Then, for cach member the quantity
F.(FL{A4) is computed, and its value is entered in the sixth column of the table. The algebraic sum of all the entrics in the
steth colummn, 37 F(FL/A4), is then determined, and its value is recorded at the bottom of the sicth column, as shown.
Fmally, the desired deflection Az 15 determined by applying the virtual work expression (Eq. (7.23)) as shown in Table 7.2,
Mote that the posiive answer for A ndicates that joint ¢ deflects to the right, in the direction of the unit load.

TABLE T2
F,(FL/4)

Member L (in) 4 (in%) Fk) F. (k) (k?/in.)
AR 192 4 (10 1 2880
ch 192 3 1] 1] 1]
EG 192 3 —20 [i] L]
AC 144 4 (.10 1.5 3240
CE 144 4 1] 1] 1]
BD 144 4 —15 —0.75 405
DG 144 4 -15 .75 405
BC 240 3 —75 —1.25 7,500
O 240 3 25 1.25 2,500

1 FL
1(Ag) = F. (7)
16,930 k2 /in.
(1 B4 =5 000 ki
An=10.584 in.
Az =10.584 in. — Ans.
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Determine the honzontal and vertical components of the deflection at joint & of the truss shown mn Fig. 7.7(a) by the
wvirtusl work method.

J5 kN

A

e, |
4m ——f—3m

= constant
£=2000Pa
A= 1,200 mi?

£ ib) Real System — F Forces

0,43 0.57

i) Virtual System for () Virmua] Syseem for

mh Determining Agy (F,) Forces) Determining Ay, (OF, 2 Forees)

Solution
Real System. The real system and the corresponding member axial forces (F) are shown in Fig. 7.7(k).

Horizontal Deflection at £, Agy. The vintual system usd for determining the horizontal deflection at 8 consistsof a 1-k™N
Inad applied in the horizontal direction at joint &, as shown in Fig. 7.7(c). The member axial forces (£, ) doe to this virmal
load are also shown in this fisure, The member axial foroes due to the real systemn (F) and this vinual system (F,, ) are then
tabulated, and the virtual work expression given by Eq, (7.23) is applied to determine Agy, asshownin Table 73,

Vertical Deflection at £, Agp. The virmal system used for determining the vertical deflection st & consists of 2 1-k™ load
applied in the vertical direction ut joint B, as shown in Fig, 7.7[d). The member axial forces (Fa ) due to this virtunl load
are also shown in this figure. These member forces am tabulated in the sixth colimn of Table 7.3, and Agy is computed
by applying the virtual work expression (Eqg. (7.23)), as shown in the twble.

o ]
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TABLE 73
L F Fy FulFL) Fa Faa(FL)
Member  (m)  (kN) kN kNem)  (N)  (kNP.m)
AR 4 N 1 4 0.43 36.12
BC 3 21 LI 0 (.43 709
AD 5.66 —T19.2 0 0 —0.61 27345
BD 4 B4 0 0 1 33600
cD 5 —35 0 0 —0.71 12425
STE(FL) w 79691
1 1
lAzr) = EEEI{PL] Ae) = EE Fa(FL)
B4 . To691
Agyr = 0.00035 m Agy = 000332 m

Determine the vertical deflection at joint ¢ of the truss shown in Fig. 7.8(a) due to a temperature drop of 15°F in members
ABand BC and a temperature increase of 60°F in members AF, F G, GH, and EH . Use the virtual work method.

=

o= 6510 )°F
(a)

“.
A E
ke =
I Ik T
05 5
i) Real Systern — AT () Vinual System — F, Forces

AG. 78

o
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Solution
Real System. The real system conasts of the temperature changes (AT} miven in the problem, as shown in Fig. 7 8(h).

Virtual System. The virtual system conssts of a 1-k load applied in the vertical direction at joint C, as shown in Fig. 7.8(c).
Mote that the virtmal axial forees (F.) are computed for only those members that are subjected to temperature changes.,
Because the tempemture changes in the mmaming members of the truss ane zero, their axal deformations are zero; there-
for, no internal virtual work is done on those members.

Vertical Deflection at O, A The temperature changes (AT and the virtual member fores (F,) are tabulated along with
the lengths (L) of the members, in Table 7.4. The codficient of themal expansion, «, 15 the same for all the members, so
its value 15 not induded in the table. The deared deflection A 15 determmed by applying the virtual work expresaon
given by Eq. (7.25), as shown in the table. Mote that the negative answer for A ¢ indicates that joint © deflects upward, in
the direction opposite to that of the unit load.

TABLE T4

Member L(f) AT [*F) F, (k) E,(AT)L [k-=F-ft)
AR 10 —15 0.667 —100

BC 10 -15 0.667 —100

AF 12.5 i —0833 —625

FG 12.5 &0 —0833 —625

GH 125 60 —0%33 635

EH 125 0 —0£33 —625

T E(AT)L = —2,700

1(Ac) = a¥ E(AT)L
(1 k)Ac = 6.5(107%)(=2,700) k-ft
Ac=-00176 ft = =0.211 in.
Ac=0211in.1 Ans.

R N A INER B

Determine the vertical deflection at joint £ of the truss shown in Fig. 7.9(a) if member CF is (L6 in. too long and member
EF 1504 1. too short. Use the method of virtual work.

Solution

Real System. The mal system consists of the changes in the lengths (6] of members CF and EF of the truss, as shown in
Fig. 7.9(b).

Virtual System. The virtual system conasts of a 1-k load apphied in the vertical direction at joint £, as shown in Fig. 7.9(c).
The nocessary virtual forces (F:) in members CF and EF can be casily computed by using the method of sections.

Vertical Deflection at [, Ap. The desired deflection is determined by applying the virtual work expression given by
Eq. (7.2%), as shown in Table 7.5.

i f;fd}:uh,;,'ﬂ-'lﬂ,'r:b?“r-,;r'#lh 11 - 41
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(a)
E =04in. F

{c) Virtual Systern — F, Forces

AG. 7.8
TABLE 75
Memher 4 (in.) F (K Fuld) (k-in.)
CF 0.6 -1 06
EF —0.4 1 -4
5 Fufd) = —1.0
1(8p) = S
(1 K)Ap = =10 kein,
Ap =—10in.
Ap=10m. T Ans.
e s ST
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74 Deflections of Beams by the Virtual Work Method

To develop an expression for the virtwal work method for determining

the deflections of beams, consider a beam subjected to an arbitrary load-
ing, as shown in Fig. 7.10(a). Let us assume that the vertical deflection, A,

A== =
al =
. SO, R = i f ;)
dx
L
ia) Real Svstem
1
| =
A e e I b
a - I el e
Ed L e ‘ M;( = M,
L 1 _Lf_,‘l_
i) Virtual Sysiem for Defermining A (c)

A f_“\'
Wi = ]
(-r_‘,.l' e,
X | 4 |

(dp Viriual System for Determining &

-._J.:".',:,!_!.r:.u!lu'ﬂr'l.r';T:ﬁ‘r—Lf'lfl:u

at a point B of the beam is desired. To determine this deflection, we select
a virtual system consisting of a unit load acting at the point and in the
direction of the desired deflection, as shown in Fig. 7.10(b). Now, if we
subject the beam with the virtual unit load acting on it (Fig. 7.10(b)), to
the deformations due to the real loads (Fig. 7.10(a)), the virtual external
work performed by the virtual unit load as it goes through the real de-
flection A is W, = 1(A).

To obtain the virtual intermal work, we focos our attention on a
differential element dx of the beam located at a distance x from the left
support 4, as shown in Fig. 7.10(a) and (b). Because the beam with the
virtual load (Fig. 7.10(b)) is subjected to the deformation due to the real
loading (Fig. 7.10{a)), the virtual internal bending moment, M, acting
on the element dx performs virtual internal work as it undergoes the real
rotation df, as shown in Fig. 7.10(c). Thus, the virtual internal work
done on the element dx is given by

AW, = M, (d6) (7.26)

Note that because the virtual moment M, remains constant during the
real rotation d, Eq. (7.26) does not contain a factor of 1/2. Recall from
Eq. (6.10) that the change of slope J8 over the differential length dx can
be expressed as

M
df == dx (7.27)
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in which M = bending moment due to the real loading causing the ro-
tation df. By substimting Eq. (7.27) into Eq. (7.26), we write

dW, = M”(g'_g dx (7.28)

The total virtual internal work done on the entire beam can now be de-
termined by integrating Eq. (7.28) over the length L of the beam as

L
MM
W, = dx 7.29
4 L T (7.29)

By equating the virtual external work, W, = 1{A), to the virtual in-
ternal work (Eqg. (7.29)), we obtain the following expression for the method
of virtual work for beam deflections:

Lamom

1(A) = | ——dx (7.30)

If we want the slope # at a point C of the beam (Fig. 7.10{a]), then we
use a virtual system consisting of a unit couple acting at the point, as
shown in Fig. 7.10(d). When the beam with the virmal unit couple is sub-
jected to the deformations due to the real loading, the virtual exiernal
work performed by the virtual unit couple, as it undergoes the real rota-
tion &, is W, = 1(#). The expression for the internal virmwal work remains
the same as given in Eq. (7.29), except that M, now denotes the bending
moment due to the virtzal unit couple. By seiting W, = W, we obtain
the following expression for the method of virwal work for beam slopes:

AL
1{3}=L Lo (7.31)

In the derivation of Eq. (7.29) for virtual internal work, we have neg-
lected the internal work performed by the virtual shear forces acting
through the real shear deformations. Therefore, the expressions of the
virtual work method as given by Egs. (7.30) and (7.31) do not account for
the shear deformations of beams. However, for most beams (except for
very deep beams), shear deformations are so small as compared to the
bending deformations that their effect can be neglected in the analysis.
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Procedure for Analysis

The following step-by-step procedure can be wsed to determine the slopes
and deflections of beams by the virtual work method.

1.

y 4

Real System Draw a diagram of the beam showing all the real
(given) loads acting on it.

Virtual System Draw a diagram of the beam without the real
loads. I deflection is to be determined, then apply a unit load at

the point and in the direction of the desired deflection. If the
slope is to be calculated, then apply a unit couple at the point on
the beam where the slope is desired.

By examining the real and virmal systems and the varation of
the flexural rgidity ET specified along the length of the beam,
divide the beam into segments s0 that the real and virtual load-
ings as well as EJ are continuous in each segment.

For each segment of the beam, determine an equation express-
ing the variation of the bending moment due to real loading
(M) along the length of the segment in terms of a position co-
ordinate x. The origin for x may be located anywhere on the
beam and should be chosen so that the number of terms in the
equation for M is minimum. It is usually convenient to consider
the bending moments as positive or negative in accordance with
the beam sign convention (Fig. 5.2).

For each segment of the beam, determine the equation for the
bending moment doe to virtual load or couple (M) using the
same x coordinate that was used for this segment in step 4 to
establish the expression for the real bending moment, M. The
sign convention for the virtual bending moment ( M,) must be
the same as that adopted for the real bending moment in step 4.
Determine the desired defiection or slope of the beam by ap-
plving the appropriate virtual work expression, Eq. (7.30) or
Eq. (7.31). If the beam has been divided into segments, then the
integral on the right-hand side of Eq. (7.30) or (7.31) can be
evaluated by algebraically adding the integrals for all the sep-
ments of the beam.
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Graphical Evaluation of Virtual Work Integrals

The integrals in the virtnal work equations (Eqgs. (7.30) and (7.31)) are gen-
erally evaluated by mathematically integrating the equations of the quan-
tty ( M, M/ ET) for each segment of the strocture. However, if a struchore
consists of segments with constant EJ, and is subjected to a relatively sim-
ple loading, then an alternate graphical procedure may be more convenient
for evaluating these integrals. The graphical procedure essentially involves:
(a) drawing the bending moment diagrams of the sirocure due to the real
and virteal loads; and (b) determining the expressions of the virtual work
integral [_[;,L M M dx) for each sepment from a table of integrals, by com-
paring the shapes of the segment’s M and M, diagrams with those given in
the table. The expressions for such integrals for M and M, diagrams of
some simple geometric shapes are given in Table 7.6, and the graphical
procedure is illustrated by Example 7.10 for beams and (in the following
section) Example 7.14 for frames,

¥
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TABLE 75 Integrals [ M, M dx for Moment Diagrams of Simple Geometric Shapes

M. / - le
My My M My ! I
vl -
M |—l;—|—— Iy
L L L L
|
M,
MM L M ML 1M, MM L MM L
L
M,
sMaM L SMaML (M, 4+ 2Ma)M L MM (L+1)
L
M,
IM ML IM ML F2M, + MM\ L TMM(L+1)
L
continued
7, o ,_,ﬁ ¢
O Ty J'—L;r"I.L"L-..r
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TABLE 76 (contd.)

— m
M, M (M + My)L M, (M) +2My)L LM (2M, + My) + Ma(My + 2Mo)|L | M,y [M(L + 1) + My(L + 1))
L
Parabola
j’l IMaM L SMaMIL } (Mo + Ma)MIL FMaM(L+48
—
Semi-parabola ,
My IMaMiL SMaMiL L(3Mu + SMa)MiL MM (3L + 30 - 4)
L
Pambolic
spadeel /|
1
\ M ML MM L & (M +3Ma)M,L ,l,u..u.(l. -k +§)
——
L
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Determine the slope and deflechon at pomt 4 of the beam shown m Fig. 7.10{a) by the virtus| work method.

(215 [
AT -'1"1_”1_-“ 1r'£ [ -I ]

: |
. i | L

LTI

{b) Real System — M

L

L
() Virtual System for Determining 8, — M, () Virtual System for Determuning Ay — M4

ARG 7.11
Solution
Real System. Sce Fig, 7.11(b),

Slope at 4, #,. The virmal system consigs of a unit couple applied at A4, as shown m Fiz, 7.11jc). From Fig. 7.11{a)
throngh (¢}, we can see that there are no discontinumities of the real and virtual loadings or of £1 along the length of the
&m;ﬁreﬁrn,ﬂ::ﬁ:i:mnmdmmbdiﬁdsthsbtm into segments. To determine the equation for the bending mo-
ment M due to real loading, we select an x coordmate with its ongin at end A of the beam, as shownin Fig. 7.11(h), By
applying the method of sections described in Section 5.2, we determine the equation for A as

i 3
O<x<l u=_5(x](1i) (§)=_%

Similarly, the equation for the bending moment My due to virtual unit moment in terms of the same x coordinate is
l<x<L Ma=l
To determine the desired slope &4, we apply the virtual work expression given by Eqg. (7.31):
Lot M L und
W) =] ——dv=| 1| ——)ax
e [ El I ( ﬁLEf)

Oa— W x“f'_ wi?
“TTEEIL|T), T TRH
The negative answer for  ; mdicates that pont 4 rotates countercloc kwise, in the direction opposite to that of the unit moment.
wi?
U=sm L e

Deflection at 4, A, The virtual system consists of & unit load applisd at 4, as shown in Fig. 7.11(d). If we use the same x
coordinate as we used for computing 84, then the equation for M remans the same as before, and the equation for
bending moment M,y due to virtual it load (Fig. 7.11({d)} 1= given by

D<x< L Ma=-l{x)=-x

romn e
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By applying the virmal work expression given by Eq. (7.30), we determine the desired deflection A, as
LM aM o
180=[ 25 .t:[:[—x](_w_)ir
A _L[i]‘_w_“
4T BEIL|S5|, 30EI
The positive answer for A 4 indicates that point 4 deflects dowmward, in the direction of the unit load.

Lii-
Ay =2 An
¥l _'HLE.FL 5.

Determine the slope at point & of the cantilever beam shown in Fig. 7.12(a) by the virtual work method.

18k
A’I B
! 25 fi {
El = constant
E = 10,000 ksi
I =5440in?
(a)
18k

13
N

(b) Real System — M

h —

(c) Wirtual System — M,,

AG. 7.12

Solution

The real and virtual systems are shown m Figs, 7.12(b) and (<), respectively. As shown in these figures, an x coordinate
with its origin at end 8 of the beam is selected to obtain the bending moment equations. From Fig. 7.12(b), we can see
that the equation for M in temms of the x coordinate is

0<cx<25ft M= —18x
Similarhy, from Fig. 7.12(c), we obtain the equation for M, to be
D<x<25ft M, =-1

-r_--'..-- -..J_:'T'_-A!.r:..r!lu'ﬂ"Lryr:ﬁl—Lf.!v'l:u
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The slope at & can now be computed by applying the virtusl work expression given by Eq. (7.31), as follows:

1(8&) =[:“é,”¢c

1(8s) = lﬁf —1(—18x) dx

5625 kKT8

(1 keft)y = 2

_ 5625 k-ft* _ 5,615(]2]2 _
g = = = (16,000)(5,40] =0.0149 md
The positive answer for g indicates that point & rotates clockwise, in the direction of the unit moment.
8= 00149 rad. :é Ans,

Determine the deflaction at point 0 of the beam shown in Fig. 7.13(a) by the virtual work method.

o

et a1 T,ﬁ:ﬂ-_f'ym

150 kN
B l D
..m- . %—E
'—Z‘-m im I 3m jm—-‘
| |
F=300010%  [=600(10% mm* J= 300 (10%)
mm* mm*
E =2 GPa
fa)
150 kM 1 kM
A L A..l:l. - .[.E'...E

=
Lh
—_—

|
-]
r
-
—I——-
e

* |

AG. 713 (b} Real System — M

() Virtual System — M,
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Solution
The real and virtual systems are shown in Fig. 7.13(b) and (c), respectively. It can be seen from Fig. 7.13(a) that the
flexural rigidity EI of the beam changes abruptly at points B and D. Also, Fig. 7.13(b) and (c) indicates that the real and
virtual loadings ame discontimuous at points C and 0, respectively. Consquently, the vanation of the quantity (M, M/ EJ)
will be discontinuous at points 8, C, and . Thus, the beam must be dvided into four segments, AB, BC, €D, and DE;
mcuﬂlscgmt'thsqmmy[M.MfEf] wﬂlbcmnnmmsnnd,ﬂ:mdrqmbcmtqmtad

The x coordinates selected for determining the bendng moment equations are shown in Fig. 7.13(b) and (¢]. Note
that in any particular segment of the beam, the same x coordinate must be used to write both equations—that i, the
equation for the real bending moment (Af) and the equation for the virtual bending moment (A, ). The equations for M
and M, for the four segments of the beam, determined by using the method of sections, are tabulated in Table 7.7. The
deflection at [ can now be computed by applying the virtual work expression given by Eq. (7.30).

EMM
Er

1(As) == “: G) (75x) ir+%j: (;-‘) (75x) de
H: G) (=75 + 900) dx+]: G—x) (75x) dx]

+—
219375 kN® em?

1(an) = | Zt s

(1 kN)Ap = —
Therefore,
219375 kN-m®  2,19375
Ay == = = 00366 m = 36.6
o ET Z00(300) " e
Ap = 366mm | Ans,
TABLE 7.7
: El
* Coordinatc (F = 300 x M M.
Segment  Origin  Limits (m) 10 mm*) (kN - m) (kN -m)
AB 4 0-1 EI 75x %
BC 4 16 2Ef T5x %
cD 4 6-9 2Er 75x — 150(x — %
ED E 0-3 El 75x %x

Determine the deflaction at point O of the beam shown in Fig. 7.14{a) by the virtmal work method.

Solution
This beam was previously analyzed by the moment-area and the conjugate-beam methods m Examples 6.7 and 6.13,
. respectively.
i b ST o o
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12k 12k

2 kit 2 Wit
AL 1 TP i1 is e Ai}lillllllj: lc
| 304t | mﬁ—l 351 T L_I
El = constant I—.x 2 *
h; : fﬂ-&ﬂ::‘ {b) Real System — M
e 1k
. e

o

L

The mal and virtual systems for this problem are shown in Fig. 7.14(b) and (c), respectively. The real and virtual
loadings are discontinuous at point B, 50 the beam is divided into two segments, 48 and BC. The x coordinates used for
determining the bending moment equations are shown in Fig, 7.14(b) and (¢}, and the equations for Af and Af, obinimed
for each of the two segments of the beam are tmbulated m Table 7.8, The deflecton at © can now be determined by
applying the virtual work expression given by Eq. (7.30], as follows:

e (e} ¥irtual System — M,

TABLETS
x Coordinate
Scgment Origin Limits [ft] M (kAt) M, (kA1)
AB A 0-30 ix — 12 -;
cB C 0-10 —12x —x
1{As) = : %dx
I 1]
1{Ac) = g7 “: (—;) (26x— ¥ dx + L t—x}[—llr}.ﬁ-]
a3
TR
Therdfomr,
_ 600k 6,500012)° ,
Ag = 7] —_m.ﬂmnl_m]——ﬂ.m o
Ar =0.10% in. T Ans.
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Determine the deflection at point 8 of the heam shown in Fig. 7.15(a) by the virtual work method. U'se the graphical
procedure (Table 7.6) to evaluate the virtual work integral.

35 kNfm
2 I 1 e e
AT B el
I—]m ! 9m !
El = constant
E =T70GPa

i = 1,500 (105 mm?
(a)

35 kN/m e
P ¥ ¢ v ¥ ¥ ¥y V4 B |
ALl B LA B =0c
20 210 u_’-[;j ﬂI’j
&30 (= M) 125 (=M1l
| r'
. i
A D B C
"ﬁ | 3m[ o mi=t)—
S S omi=L) 12Zm(=L)——
{b) Real System and M Dingram (kN - m) () Virual System and M Diagram (kM - m)
ARG 7.6
Solution

The real and virtual systems, along with their bending moment dia grams (A and M, ), are shown m Figs. 7.15(b) and [c),
respectively. As the flexural nigdity £7 is constant along the length of the beam, there is no need to subdivide the beam
mto segments, and the virmal work equation (Eq, 7.30)) for the deflection at & can be expressed as

I L
1(5-.,}=EL MM dx (1)

To evalmte the integral [} M. M dx graphically, we first compare the shape of the M diagram in Fig. 7.15(b) with the
shapes listed in the left column of Table 7.6, Motz that the shape of the M diagram matches the shape located in the sith
row of the table. MNext, we compare the shape of the M, diagram (Fig. 7.15(c)) with those given in the top row of the
table, and notice that it & similar to the shape in the fifth column, This mdicates that the expression for evalmting the
intl:gmlL"M,Mir,iuﬂ:ﬁsm:, i located at the intersection of the sixth row and the fifth column of Table 7.6, that is,

I M ;u..u.(.tf'&)

e f;-fd};unflﬂ,'rﬁrir'#iiu




By substituting the numerical vales of M,; =225 kN-m M, =6 kN-m, L=12m, , =3 mand ; =9 m, into
the forgoing equation, we compute the mtegral to be

r MM dx = _(zﬁ](ﬁm](u+3':g]) = 6,733.13 N

The desired deflection at B can now be conveniently determined by applying the virtnal work equation (Eq. 1) as

1 673313 kN
(1 kN)Ag =Ej: MM dx = —

673313 kN-m* _ 673313

£ _Nclm=ﬂﬂ5}4m=ﬂ.dm

ﬁ_ﬂ=

Ag =514 mm | Ans.

f;'fc)}:uﬂﬂ"lﬂalr:k?;r—w'#i:u
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5 Deflections of Frames by the Virtual Work Method

Application of the virtual work method to determine the slopes and de-
flections of frames is similar to that for beams. To determine the deflec-
tion, A, or romtion, #, at a point of a frame, a virmal wnit load or unit
couple is applied at that point. When the virtual system is subjected
to the deformations of the frame due to real loads, the virtual external
work performed by the unit load or the unit couple is W, = 1{A), or
Wi = 1{#}). As portions of the frame may undergo axial deformations in
addition to the bending deformations, the total virtual internal work
done on the frame is equal to the sum of the internal virmal work due to
bending and that due to axial deformations, As discussed in the preced-
ing section, when the real and virtual loadings and the flexural rigidity ET
are continuous over a segment of the frame, the virtual intermal work due
to bending for that segment can be obtained by integrating the quantity
M. M /ET over the length of the sepment. The virtual internal work due
to bending for the entire frame can then be obtained by summing the
work for the individual segmenis; that is,

MM
Wi = Ej i (7.32)

Similrly, if the axial forces F and F, due 1o the real and virtoal loads,
respectively, and the axial rigidity AE are constant over the length L
of a segment of the frame, then, as discussed in Section 7.3, the virtual
mternal work for that sepment due to axial deformation is equal to
F,(FL/AE). Thus, the virtual internal work due to axial deformations for
the entire frame can be expressed as

L o

] ﬂ!,,;,uﬂfuﬂ.-'r_ﬁ‘:_,-_r'.!-.rli-.- 11 - 56




et a1 T,ﬁ:ﬂ-_f'ym

By adding Egs. (7.32) and (7.33), we obtain the total internal virmal
work for the frame due to both bending and axial deformations as

W= F (%j 5] EA (7.34)

By equating the virtual external work to the virtual internal work,
we obtain the expressions for the method of virtual work for deflections
and rotations of frames, respectively, as

1L’.M=EF.,G‘;) +EJM£'1.=H‘1: (7.35)
and
108) = EF.,G‘;:,) +3 J ME:FM dx (7.36)

The axial deformations in the members of frames composed of com-
mon engineering materials are generally much smaller than the bending
deformations and are, therefore, usually neglected in the analysis. In this
text, unless stated otherwise, we will neglect the efiect of axial deforma-
tions in the analysis of frames. The virtual work expressions consider-
ing only the bending deformations of frames can be obtained by simply
omitting the first term on the right-hand sides of Eqs. (7.35) and (7.36),
which are thus reduced to

1(4) = Ej%ﬂ (7.37)
and
10) =% [ (7.38)
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Procedure for Analysis

The following step-by-step procedure can be used to determine the slopes
and deflections of frames by the virtual work method.

1. Real System Determine the internal forces at the ends of the
members of the frame due to the real loading by using the pro-
cedure described in Section 5.6.

2, Virtual System If the deflection of the frame is to be deter-
minad, then apply a unit load at the point and in the direction of
the desired deflection. If the rotation is to be calculated, then
apply a unit couple at the point on the frame where the rotation

is desired. Determine the member end forces due to the virtual
loading.

et a1 T,ﬁ:ﬂ-_f'ym

11 - 58




3. If necessary, divide the members of the frame into segments so
that the real and virtual loads and ET are continuous in each
segment

4. For each segment of the frame, determine an equation express-
ing the variation of the bending moment due o real loading (M)
along the length of the segment in terms of a position coordinate x.

5. For each segment of the frame, determine the equation for the
bending moment doe to virmeal load or couple (M) using the
same x coordinate that was used for this segment in step 4 to es-
tablish the expression for the real bending moment, M. Any con-
venient sign convention can be used for M and M. However, it
is important that the sign convention be the same for both M
and M in a particular segment.

6. If the effect of axial deformations is to be incheded in the analysis,
then go to siep 7. Otherwise, determine the desired deflection or
rotation of the frame by applying the appropriate virtual work
expression, Eq. (7.37) or Eq. (7.38). End the analysis at this stape.

7. If necessary, divide the members of the frame into segments so
that the real and viriual axial forces and 4 E are constant in each
segment. It is not necessary that these segments be the same as
those used in step 3 for evaluating the virtual internal work due to
bending. It is important, however, that the same sign convention
be usad for both the real axial force, F, and the virtual axial foree,
Fp, in a particolar segment.

8. Determine the desired deflection or rotation of the frame by
applying the appropriate virtual work expression, Eq. (7.35)

or Eq. (7.36).

] ﬂ!,,;,uﬂfuﬂ.-'r_ﬁ‘:_,-_r'.!-.rli-.- 11 - 59




Determine the rotation of joint C of the frame shown in Fig. 7.16(a) by the virtual work method.

Salution

The real and virtual systems are shown m Fig. 7.16(b) and [c), respectively. The x coordinates used for determining the
bending moment equations for the three segments of the frame, 48, BC, and €D, are also shown in these figures. The
equations for M and M, obtamed for the three segments are tabulated in Table 7.9, The rotation of jont C of the frame
can now be determined by applying the virtual work expression gwen by Eq. (7.38).

i }_‘:’_f (%) (33-5.1:— I-Sg) e

o w‘j ii_ﬂ}
(1 keft)e = ——

6ABTS k- 64E7.5(12)
BT (2.00)2500

B =00129 rad . E Ans.

B = = 00129 rad.
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12 ft
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E= 29000 ksi
(2 f 1= 250K in?
| 30t
{a)
1 T
E =’
) 31!.5
Wk—|5
0 —p"
EL
6.5 480 1.5 kift
(= 5
480 _l- ﬁlj I!H.i
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40— | B
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oeanl
6.5 ib) Real System — M

R 716
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FE 7.16 (contd.)
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Lt 4 I::a- = Q
s Q
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(c) Virual System — M,

TABLE 7.4
x Coordinate
Segment Origin Limits (#t) M (k-ft) M, (k-f1)
AB A 0-12 H0x 0
CB & 0-12 480 0
be D 0-30 a8 5¢ 1 5% L
= [ £
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Lise the virtual work method to determine the vertical deflection at jont C of the frame shown in Fig, 7.17(a),

Solution

The real and virtual systems are shown in Figs. 7.17(b) and {c}, respectively. The x coordinates used for determining the
bending moment eqguations for the two members of the frame, 48 and £C, amr also shown in the figures. The equations
for M and M, obtamed for the two members are tmbulated in Table 7,10, The vertcal deflection at joant © of the frame
can now be caloulated by applying the virtual work expression given by Eq. (737}

180 =5 [Heae

(Ac) = ér_[%j:(-amsx—ssn}#qyf (- ;_1:) (—ﬁr"}d_x]

150 om?
f]tﬁ]ﬁc=$
Therefomr,
_ 4150 kNm® 4150 o
Ap = T Tﬂ{jﬂl_ﬂ.lﬂ?m_]ﬂ'?mm
F
5 4 -
R
by im
—  40kN &
5 m|2f
E =constant = 70 GPa
% I =554 (10%) mm?
| 4m
{a)
AL TAT

comnmuad

L e T

11 = vy




1N

40kN =

£ Loyl

{b) Real System — M (c) Virtual System — M,

A 747 (comtd.)

TAELE TAD
i Er
= T— 554 % M M,
St Cuiggis Limits {m) 10° mm*) (kN m) (kN -m)
AB 4 03 2E1 76x — 530 i
B ¢ 0-5 £t _u§ —;x
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Determine the horizontal deflaction at joint © of the frame shown in Fig. 7.18{a) mcluding the effect of axial deforma-

e ,__..}fdg..l_.uﬂﬂﬂﬁ'ﬁ: 5 bl

tions, by the virtul work method
2 ki
ok b b3 3 b
T i H“'Hinge
E = 29000 ksi
L I= 1,000 in*
A=35ind
A i}
—10 ft 10 ft—oi
{a)
A
k— - i ]['
B
1.67 _".LL" E:ﬂ_-— 11.67
125 275
s i 175
Hﬁ'.'ﬁ } 1 o I l L—Ilﬁ-’?
; IE .[cl :
|2|.i J 275
12.5 * 275
/1‘) B
b7 — 116
167 = T-éc
25 175
_Jl; __l_
17— I_L i 1.51_I”—L
12.5 2735
AR 718 (b) Real System — M, F
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i
7.5
L — 15 _—

(ch Vinual System — M, F,

AG. 7.18 (oomtd.)
TAELE 7.11
x Coordnate
Segment  Origin Limits (ft) M (k-ft) F (k) M. (k-ft)  F(k)
x 3
AR A 0-15 —1.67 —1250 = =
* 3 3
BC B 0-20 2541255 —x 1167 15— §x %
be b 0-15 11.67x 3750 ; _i_
Solution

The real and virtual systems are shown n Fig. 7.18(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the three members of the frame, 48, 8C, and CI, are also shown in the figures. The
equations for M and M, obtained for the three members are tabulated in Table 7.11 along with the axml foress F and F,

ot ]
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of the members, The horizontal deflection at joint C of the frame can be determmed by applying the virtual work ex-
MM

fAc) = EE(%)+EI?¢
180 = [j—(—u.s](ls] +3(-1167)(20) —%{—ﬂsmsm]
+ IE[J.E:-‘%[—].ISTI]JI

[ (752 (—25 +125x — %) de + uf(n.ﬂx]dx
[(s-2) |, 3

5208 12-ﬂ+-.=,3'.r5 Kt

1 kAz= —E £
Therefore,
_ 108kt | 9373 kft?
Ae=—pm—+—F
. 5208 . 9.375(12)*
=000 | (29.000)(1,000)
= (LO0NS + 0 04655
= 00466 ft =(0.559 in.

Mote that the magnitude of the axial deformation term &= negligibly small as compared to that of the bending deforma-
tion term.

AN -

Determine the vertical deflaction of joint 4 of the frame shown in Fig. 7.19(a) by the virtual work method. Use the graph-
ical procedure (Table 7.6) to evalate the virtual work integral.

Solution
The real and virmal systems, along with their bending moment diagrams (M and M,), are shown in Figs. 7.19(b) and (2],
respectively. As the flexural ngidity £7 is constant, the virtual work equation (Eg. (7.37)) can be expressad as

1(A4) =;EEMM¢: (1)

To evaluate th.cimtgralaLLM.th' graphically, we compare the shapes of the M and M. diagrams for member 48
with those given in Table 7.6, and obtain the relevant expression from the eighth row and second column of the table.
Thus,

ru,udml_u..u.f,
(]

vt e
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By substituting M,; = 5 kN -m, M; =§7.5 kN -m and L. = 5 m, into the foregoing equation, we compute the value of
the virtual work integral for member 48 to be
ru,u.fr=l_(5](ﬂ?.5](5] = 5469 kNE . m?
o

Similary, the expression for the mtegral for member BC is obtained from the second row and second column of Table 7.6 as
r M M dx = M, ML
@

with My =5 kN -m, My =87.5kN-m and L = 10 m, and the value of the integral for member BC is computed as
1o
M M dx = (5)(B7.5)(10) =4 375 kN* . m’
@

The desired deflection at joint 4 can now be determmned by subaituting the numerical values of the mtegrak for the two
members into the virtual work equation (Eq. 1) as

1 ‘ 49219 kN - m?
Thus,
49219 kN-m* 49219
e = =0.026 m=26
$ El 20(943) =
Ay =26mm | Ans.
e s ST
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7.6 Conservation of Energy and Strain Energy
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Before we can develop the next method for com puting deflections of stroc-
mares, it is necessary to understand the concepts of conservation of energy
and strain energy.

The energy of a structure can be simply defined as its capadiy for do-
ing work. The term strain energy is attributed to the energy that a struc-
ture Juis becaduse of its deformation. The reationship berween the work

and strain energy of a structure is based on the prindple of conservation of

energy, which can be stated as follows:

The work performed on an elastic structure in equilibrmm by statically
(gradually) applied external forees is equal to the work done by internal
forces, or the strain energy stored in the structure.

This principle can be mathematically expressed as

W=, (7.39)

W.=U (7.40)

In these equations, W, and W, represent the work done by the external
and internal forces, respectively, and U7 denotes the strain energy of the
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RG. 720

strocture. The explicit expression for the strain energy of a structure de-
pends on the types of internal forces that can develop in the members of
the structure. Such expressions for the strain energy of trusses, beams,
and frames are derived in the following,

Strain Energy of Trusses

Consider the arbitrary truss shown in Fig. 7.20. The truss is subjected to a
load P, which increases gradually from zero to its final value, causing the
structure to deform as shown in the figure. Because we are considering
linearly elastic stroctures, the deflection of the truss A at the point of ap-
plication of P increases linearly with the load; therefore, as discussed in
Section 7.1 (see Fig. 7.1(c]), the external work performed by P during the
deformation A can be expressed as

To develop the expression for internal work or strain energy of the
truss, let us focus our atlention on an arbitrary member f (e.g., member
CI¥ in Fig. 7.20) of the truss. If F represents the axial force in this mem-
ber due to the external load P, then as discussed in Section 7.3, the axial
deformation of this member is given by § = (FL) /(AE). Therdore, in-
ternal work or strain energy stored in member §, U, is given by

1 FL
U=3F=1%
The strain energy of the entire truss is simply equal to the sum of the
strain energies of all of its members and can be expressed as

U= E% (7.41)

Naote that a factor of § appears in the expression for strain energy because
the axial force F and the axial deformation d caused by F in each member
of the truss are related by the linear relationship d = (FL)/[ AE).

Strain Energy of Beams

To develop the expression for the strain energy of beams, consider an
arhitrary beam, as shown in Fig. 7.21(a). As the external load P acting
on the beam increases pradually from zero to its final value, the internal
bending moment M acting on a differential element dx of the beam
(Fig. 7.21(a) and (b)) also increases gradually from 2ero to its final value,
while the cross sections of element x rotate by an angle 4 with respect
to each other. The internal work or the strain energy stored in the ele-
ment dx is, therefore, given by

dU =< M(dé) (7.42)
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Recalling from Section 7.4 (Eq. (7.27]) that the change in slope, 48, can
be expressed in terms of the bending moment, M, by the relationship
dfl = (M ET) dx, we write Eq. (7.42) as

2
dU = =d (7.43)

The expression for the strain energy of the entire beam can now be ob-
tained by integrating Eq. (7.43) over the length L of the beam:

L 2
v =L %m (7.44)

When the quantity M /T is not a continoous function of x over the en-
tire length of the beam, then the beam must be divided into segments so
that M /ET is continuous in each segment. The integral on the right-hand
side of Eq. (7.44) is then evaluated by summing the integrals for all the
segments of the beam. We must realize that Eq. (7.44) is based on the
consideration of bending deformations of beams and does not include
the effect of shear deformations, which, as stated previously, are negli-
gibly small as compared to the bending deformations for most beams.

Strain Energy of Frames

The portions of frames may be subjected to axial forces as well as bend-
ing moments, o the total strain energy (L) of frames is expressed as the
sum of the strain energy doe to axial forces (U] and the strain energy
due to bending [Us); that is,

U= Us+ Us (7.45)

If a frame is divided into segments so that the quantity F /4 F is con-
stant over the length L of each segment, then—as shown previously in the
case of trusses—the steain energy stored in each segment due to the axial
force F is equal to (F2L)/(24 E). Therefore, the strain enerpy due to axial
forces for the entire frame can be expressed as

FIL
Ve=Y5p (7.46)
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Similarly, if the frame is divided into segments so that the quantity
M/ ET is continuous over each segment, then the strain energy stored in
each segment due to bending can be obtained by integrating the quantity
M/ ET over the length of the segment (Eq. (7.44)). The strain energy due
to bending for the entire frame is equal to the sum of strain energies of
bending of all the segments of the frame and can be expressed as

= 3 o 747)

By substituting Egs. (7.46) and (7.47) into Eq. (7.45), we obtain the fol-
lowing expression for the strain energy of frames due to both the axial
forces and bending:

H=E%+ EJ%&: (7.48)

As stated previously, the axial deformations of frames are generally
much smaller than the bending deformations and are wsually neglected
in the analysis. The strain energy of frames due only to bending is ex-

pressed as

- EJMEE‘E (7.49)
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7.7 Castigliano’s Second Theorem
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In this section, we consider another energy method for determining de-
flections of structures. This method, which can be applied only to lin-
early elastic structures, was initially presented by Alberto Castigliano in
1873 and is commonly known as Castgllane's second theorem. (Casti-
gliano’s first theorem, which can be used to establish equations of equi-
librium of structures, is not considered in this text.) Castigliano’s second
theorem can be stated as follows:

For lincarly elastic structures, the partial derivative of the stmin encrgy
with respect to an applied foree (or couple) is equal to the displacement (or
rotation) of the force (or couple) along its line of action.

In mathematical form, this theorem can be stated as:

U au (7.50)

—_— =,

F7 R v 7

in which I/ = strain energy; A = deflection of the point of application of
the force P, in the direction of P and 8, = rotation of the point of ap-
plication of the couple A, in the direction of M.

To prove this theorem, consider the beam shown in Fig. 7.22. The
beam is subjected to external loads Py, Py, and P, which increase
gradually from zero to their final values, causing the beam to deflect, as
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Castigliano’s Theorem

 Strain energy for any elastic structure
subjected to two concentrated loads,

2 2
U =%(a11|°1 +201,R P + o P )

 Differentiating with respect to the loads,

oU
= — o P +apP =X
apl 1171 1272 1
oU

T =P+ agP =X
aPZ 1271 2212 2

o (Castigliano’s theorem: For an elastic structure
subjected to n loads, the deflection x; of the
point of application of 2, can be expressed as

XjZa—U and HjZ—aU ¢J=a—u
OP; 8Mj 8TJ—

1 - ) .J:- 5
e e B | o el




Deflections by Castigliano’s Theorem

1 - ) ‘.I'r 5
-.‘-r'.-".',_-..;!.-—'.-r'.'l,_‘-l".l"".r'.- i :E'""'r—;___-l'.'-:-"nl-'.-

« Application of Castigliano’s theorem is
simplified if the differentiation with respect to
the load P;1s performed before the integration
or summation to obtain the strain energy U.

* In the case of a beam,

L..2 L
(M7 XjZGU:jMGMdX
2El oP; * El 0P
0 0
. Foratruss
U &FLoR
2A,E %= aP ~ AE P;
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shown in the figure. The strain energy (L) stored in the beam due to the
external work (W) performed by these forces is given by

1 1 1
U=W,=>PA +5Pls+ ~Pils (7.51)

in which A, Az, and Ay are the deflections of the beam at the points of
application of Py, Py, and Py, respectively, as shown in the fipure. As
Eq. (7.51) indicates, the strain energy U is a fonction of the external loads
and can be expressed as

U= f(P.P..Py) (7.52)

Now, assume that the deflection A; of the beam at the point of ap-
plication of Py is to be determined. If P, is increased by an infinitesimal
amount 4Py, then the increase in strain energy of the beam due to the
application of 4P, can be written as

ou

and the total steain energy, Uy, now stored in the beam is given by

Ur=U+ JU:U-ILE—UJPE (7.54)
Py

The beam is assumed to be composed of linearly elastic material, so
regardless of the sequence in which the loads Py, (P 4 oF), and P; are
applied, the total strain energy stored in the beam should be the same.

Consider, for example, the sequence in which 4Py is applied to the
beam before the application of Py, Py, and Ps. If dA; is the deflection of
the beam at the point of application of 4P, due to 4P, then the strain
enerpy stored in the beam is given by (1,/2){dP:)(dAz). The loads Py, Pa,
and Py are then applied to the beam, causing the additional deflections
Ay, Ax, and A, respectively, at their points of application. Note that since
the beam is linearly elastic, the loads Py, Py, and P cause the same de-
flections, Ar, Az, and As, respectivdy, and perform the same amount of
external work on the beam regardless of whether any other load is acting
on the beam or not. The total strain energy stored in the beam during the
application of dP: followed by P, Py, and P is given by

1 1 1 1
Uy = e I{sz }I{dﬁz} + d?zl{.&z} + FPI A+ ?Pzﬂ.z + ?P}&J I{TSS}

Since 4P remains constant during the additional deflection, A, of its
point of application, the term JP2(Az) on the dght-hand side of Eq. (7.53)
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does not contain the factor 1/2. The term (1,/2)(dP:)(dA;) represents a
small quantity of second order, so it can be neglected, and Eq. (7.55) can
be written as

1 1 1
Ur = dPy{Az) + 5 PiAy + 5 Pals + 5 Pidy (7.56)

By substituting Eq. (7.51) into Eq. (7.56) we obtain
Ujr' = ti?zl':ﬂg} Es U (?.5?}

amd by equating Eqs. (7.54) and (7.57), we write

arr
U —dP = dPs( A U
+ﬂPz 2 2 Az) +

or

aour
A
T

which is the mathematical statement of Castigliano’s second theorem.

Application to Trusses

To develop the expression of Castigliano’s second theorem, which can be
wsad to determine the deflections of trosses, we substitute Eg. (7.41) for
the strain energy (L) of trusses into the peneral expression of Castigliano's
second theorem for deflections as given by Eq. (7.50) to obtain

i FL
A=Y 50E (7.58)

As the partial derivative /F2 /P = 1F(dF /8P), the expression of Casti-
gliano’s secomd theorem for trusses can be written as

a-5(5) 5 (7.59)

The foregoing expression is similar in form to the expression of the
method of virmal work for trusses (Eq. (7.23)). As illustrated by the
solved examples at the end of this section, the procedure for computing
deflactions by Castigliano’s second theorem is also similar to that of the
virtual work method.

Application to Beams

By substiuting Eq. (744) for the strain energy (U] of beams into the peneral
expressions of Castigliano’s second theorem (Eq. (7.30]), we obtain the fol-
lowing expressions for the deflections and rotations, respectively, of beams:
it M2 i [tm
_EL de amd & _mjn de
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A= J: (‘z_“;) %.:i: (7.60)

anmd

f= J: (%Li) %i: (7.61)

Application to Frames

Similarly, by substituting Eq. (7.48) for the strain energy (/) of frames
due to the axial forces and bending into the general expressions of Cas-
tighianos second theorem (Eq. (7.50]), we obtain the following expres-
sions for the deflections and rotations, respectively, of frames:

ﬁ=z(§—§)%+zj(‘l—“j)gm (7.62)
amd
o= E(;—f—,) % 4 EJ@—T?) %i: (7.63)

When the effect of axial deformations of the members of frames is neg-
lected in the analysis, Egs. (7.62) and (7.63) reduce to

A= EJ (“Z_f) %i: (7.64)

and

#=7 JG—E) %.i: (7.65)

e ﬂ!,,;,uﬂfuﬂ.-'T'_ﬁ‘:_,-_r'.Lrli-.- 1-79




Procedure for Analysis

As stated previously, the procedure for computing deflections of struc-
tures by Castigliano’s second theorem is similar to that of the virmal
work method. The procedure essentially involves the following steps.

1.

If an external load (or couple) is acting on the given structure
at the point and in the direction of the desired deflection (or
rotation), then designate that load (or couple) as the variable
P (or M) and po o step 2. Otherwise, apply a fictitions load P

(or couple M) at the point and in the direction of the desired
deflection (or rotation).

Determine the axial force F and/or the equation(s) for bending
moment M(x) in each member of the siructure in terms of P
(or M.

Differentiate the member axial forces F and/or the bending
moments M (x) obtained in step 2 with respect to the variahble P
(or M) o compute dF /3P andfor M /P (or oF jdM and for
JMjo8T),

Substitute the numerical value of P (or #7) into the expressions
of F and/or M{x) and their partial derivatives. If P {or 8f) rep-
resents a fictitious load (or couple), its numerical value is zero.
Apply the appropriate expression of Castigliano’s second theo-
rem (Eqgs. (7.59) through (7.65)) to determine the desired deflec-
tion or rotation of the strocture. A positive answer for the desired
deflection (or rotation) indicates that the deflection (or rotation)
occurs in the same direction as P (or M) and vice versa,

et a1 T,ﬁ:ﬂ-_f'ym
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Sample Problem 11.5

SOLUTION:

 For application of Castigliano’s theorem,
introduce a dummy vertical load Q at C.
Find the reactions at A and B due to the
dummy load from a free-body diagram of
the entire truss.

» Apply the method of joints to determine

the axial force in each member due to O.
Members of the truss shown X U Q

consist of sections of aluminum « Combine with the results of Sample
pipe with the cross-sectional areas Problem 11.4 to evaluate the derivative
indicated. Using £= 73 GPa, with respect to Q of the strain energy of
determine the vertical deflection of the truss due to the loads Pand Q.

the joint C caused by the load P.
« Setting Q= 0, evaluate the derivative

which is equivalent to the desired
displacement at C.

| = p— ..l'
N [ T ¥ AL . Ll
-I-'.'"I '.'_.:.".h '.‘l'.__llr."‘".'l.- |-F.-'.__l" .-:-""u-.-




Sample Problem 11.5

P

E

1 - ) ‘; 5
e e B | o el

SOLUTION:

 Find the reactions at A and B due to a dummy load Q
at C from a free-body diagram of the entire truss.

Ac=—3Q A/=Q B=3Q

* Apply the method of joints to determine the axial
force in each member due to Q.

Fce =Fpe =0
Fac =0; Fcp =-Q

Fag =0; Fgp =—5Q




Sample Problem 11.5

w . Member F, aF,/0Q L,m A, m? (E)a_ﬁ
1A , c ! : ’ I b A JaQ
AB 0 0 0.8 500 X 107° 0
AC +15P/8 0 0.6 500 X 1076 0
AD +5P/4 + 5Q/4 2 1.0 500 X 107° | +3125P +3125Q
BD —21P/8 — 3Q/4 -3 0.6 1000 X 107¢ | +1181P + 338Q
CD -Q -1 0.8 1000 X 107° + 8000
CE +15P/8 0 1.5 500 X 107 0
0.6 m ' DE —17P/8 0 1.7 1000 X 1076 0

e Combine with the results of Sample Problem 11.4 to evaluate the derivative
with respect to Q of the strain energy of the truss due to the loads Pand Q.

_vy[RLijoR _1
Ve _Z(AiEjaQ == (4306P + 4263Q)

« Setting Q= 0, evaluate the derivative which 1s equivalent to the desired
displacement at C.

~ 4306(40x10° N
73x107Pa

Ve yc =2.36mm <

1 - ) .J:- 5
e e B | o el




Determine the deflaction at point C of the beam shown in Fig. 7.23{a) by Castighano's second theorem,

12k

2 kit
Y T |,
! 300 | mﬁ_J

El = consrant
E = 29,000 ksi
£=2,000 in.*
i}
_ =12k}
,ﬂ_IHHHHE 1.‘_"
= l—iJ '.il]+“!—P L-’?—I
AG. 723 {b)

Solution
This beam was previously analyred by the moment-grea, the conugnte-beam, and the virtual work methods in Exam-
ples 6.7, 6.13, and 7.9, respectively.

The 12-k external load is already acting at point C, where the deflection is to be determmned, so we designate this
load as the variable P, as shown in Fig. 7.23{b). Next, we compute the reactions of the beam in terms of P, These are
also shown in Fig. 7.23(b). Since the loading is discontinuous at point B, the beam s divided into two scgments, 48 and
BC. The xcoordinates used for determming the equatons for the bending moment in the two ssgments of the beam are
shown m Fg. 7.23(b). The equations for Af (in terms of ) obtained for the ssgments of the beam are tabulated in Table 7.12,
along with the partial derivatives of M with respect to P.

.._-.:-T‘-_-A!.-LHL,'FIHJT.-EZ‘J-E.L#EJ -
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TABLE 712

x Coordinate

an
Segment Origin Limits (£t M (k80 ar ()

Fa x
AB 4 0-30 (m = E)x L -3
cB c 010 _py e

The deflection at € can now be determined by substituting P = 12 k into the equations for M and M /3P and by
applying the expression of Castighano's second theorem as given by Eq. (7.60);

o=, (GF) () =
se=gg, (-3) (e 57) &+ [ 9120

= ]E “:B(_j e }ﬁ-i-l:n(—x}{—llﬂ -tr]
600 kS 6.500012)°

T T ey
The negative answer for Ac indicates that point € deflects upward in the dircetion opposite to that of P.
Ac=0.1% in. { Ans.

S E AN INE -

Use Castigliano's scond theorem to determine the deflection at point & of the beam shown m Fig. 7.24a ).

P P
A B A } l.ﬂ'
: | ==
El = consiant
A6 724 (@) 3]
Solution
Using the x coordinate shown in Fig. 724(b], we write the equation for the bending moment in the beam as
M=—FPx
The partial denvative of M with respect to P 1s given by
M——x
==

covnmund
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The deflection at 8 can now be obtained by applying the expression of Castigliano's second theorem, as given by

w-1,(%) (5)+

Eqg. (7.60), as follows:

S S ST T
| C !'#D c TLD
12 ft _
Wk I Ef = constant AMk—|B H:H“!
E'= 20,000 ksi
121t F=2500in?
L s
t 30 - T
fa} 65 -
&5“% 480 + & 1.5 K
(o (- -
1 e 385+§
4 —=| B
-
m__Tq
65-§ (b
AG. 725
o el
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Solution
This frame was previously analyzed by the virtual work method in Example 7.11.

Mo external couple is acting at joint £, where the rotation is desired, so we apply a fictiious couple 87 (=U) at C,
asshown in Fig. 7.25(b). The x coordinates used for determining the bending moment equations for the three segments of
the frame are also shown in Fig, 7.25[b), and the equations for M in terms of 57 and @ M /287 obtined for the thre
segments are tabuluted in Table 7.13. The rotation of joint € of the frame can now be determined by setting 57 = 0 in
the equations for M and &M /84T and by applying the expression of Castighano's sccond theorem as given by Eq. (7.65):

o= EIG_E %dx

=]': (3%) (3351'—1.51;) dx

_ 6A4BTS kAT 64RTS(12)0
-5 mmmp'm]_nmzﬁmd

8- = 00129 mad : 2 Ans,
TABLE 713

x Coordinate am
Sepment Origin Lirmnits {ft) M (k-] ﬁ{hﬂ’f}:ﬁ}
AR A 0-12 40x 0
B C 0-12 480 0

x x

iilad i 0-30 (33.5+%)x— lj? 5

Usz Castiglisno'’s second theorem to determine the horizontal and vertical components of the deflection at joint 8 of the
il show. i Fig. 7.26(8),

(~15+043 PN ¢
=P e
s a|pi=0 ==
| Pl =84) I
wm=ip =20 + 3
i) (b}
AG. 726
oD e
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Solution
This truss was previously analyzed by the virtual work method in Example 7.3,

TABLE 7.14
ar aF For Py =0 and P =84 kN
L F iR GF  (3F[3R)FL (3F[aPy)FL
Mcmber  (m) kM) (ENEN]  [EN/EN) (kN -mj (kM -m]
AB 4 —15+ A+ 043P | 0.43 448 3632
BC 3 —154+ 043P i .43 i} M4
AD 566 —2B2E— 0615 0 —.61 i} 274.55
BD 4 P 0 1 0 33600
cb s ’_07P 0 —071 0 12297
¥ a_i)” 84.48 797.08
aF aF
e EAE(-EP)” A = g7 77 -
448 T97.08
= . e kM -m
R4 48 3 T97 08
=m=ﬂ.mw:ﬂ =m=ﬂ.mﬂlm
Agy =035 mm — Ars. Agyr =332 mm | Ans.

As shown m Fig. 726(b), a fictitous horizontal force # (= 0) is applied at joint & to determine the hormontal
component of deflection, whereas the #4-kM vertical load i designated as the variable P; to be used for computing the
xﬁ&ﬂmtmﬂfﬂnﬂuﬁiﬂuﬂjﬁntﬂ.ﬁtmgﬁﬂfﬂm‘iﬂmﬁﬁandP:,artﬂ:l:n&tcm:innib}'np-
plying the method of joints These member fomes F, along with their partial dedvatives with respect to £ and £, are
tmbulated m Table 7.14. Note that the tensile axial forces are considersd as positive and the compressive forces ane
negative. Mumerical values of £ =0 and P; = 84 kN are then substituted in the equations for F, and the expresaon of
Castighano's scond theorem, as given by Eq. (7.59) is applied, as shown in the table, to determine the horizontal and
vertical components of the deflection at joint 8 of the truss.

f;'fc)}:uﬂﬂ"lﬂalr:k?;r—w'#i:u
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7.8 Betti's Law and Maxwell's Law of Reciprocal Deflections
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Maxwell's low of reciprocal deflections, initially developed by James C.
Maxwell in 1864, plays an important role in the analysis of statically in-
determinate structures to be considered in Part Three of this text Max-
well's law will be denved here as a special case of the more general Beni's
faw, which was presented by E. Betti in 1872. Betti's law can be stated as

follows:

For a lincarly dastx structure, the virtual work done by a P system of
forces and couples acting through the deformation caused by a @ system of
forces and couples is equal to the virtual work of the O system acting
through the deformation due to the P system.

To show the validity of this law, consider the beam shown in Fig. 7.27.
The beam is subjected to two difierent systems of forces, P and  systems,
as shown in Fig 727(a) and (b), respectively. Now, let us assume that we
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=

E, subject the beam that has the P forces already acting on it (Fig. 7.27(a)) o
| l the deflections caused by the (0 system of forees (Fig. 7.27(b)). The virtual
. external work () done can be written as

NGRS

L

W":Ppig" + Pz.&gz +"' + P,.}lg.

or
{ah P System
[}

n
W= ZPI"&Q‘I

- I RN | I— -

A l«w ,ﬁ.e,l e By applyving the principle of virtual forces for deformable bodies,
| i, S i W, = W, and using the expression for the virteal internal work done in
| beams (Eq. (7.29)), we obtain

(b G Systern — LAfpMM
— > Pig = | i (7.66)

Mext, we assume that the beam with the @ forces acting on it
(Fig. 7.27(b)) is subjected to the deflections caused by the P forces
(Fig. 7.27(a)). By equating the virtual external work to the virtual in-
ternal work, we obtain

m L MgM

oy - | M (767)
I=1 a

Moting that the right-hand sides of Eqgs. (7.66) and (7.67) are identical,

we equate the left-hand sides 1o obtain

> Pdg =30/ (7.68)
I J=

Equation (7.68) represents the mathematical statement of Bemi's law.
Maxwell's law of reciprocal deflections states that for o finearly elas-
tic structure, the deflection at a point { due 1o a unit foad applied ata poing j
i5 equeal o the deflec tion at f due 1o o unit load at §.
In this statement, the terms deflection and food are used in the peneral
| sense to inclede rotation and couple, respectively. As mentioned pre-
viously, Maxwell’s law can be considerad as a special case of Betti's law.
| j To prove Maxwell's law, consider the beam shown in Fig. 7.28. The

; f—-[_ = beam is separately subjected to the P and ( systems, consisting of the

T |
.

I i
' |
|
]

R A = unit loads at points { and j, respectively, as shown in Fig. 7.28(a) and ().

L_I_.l As the figure indicates, Jf; represents the deflection at § due to the unit
load at j, whereas f;; denotes the deflection at j due to the unit load at £,
These deflections per unit load are referred to as fexthility coefficients. By

applying Betti's law (Eq. (7.68)], we obtain
1) = 104

I
i
i B Lg __J- e or
]

[b) O System

Jy =T (7.69)

AG. 7.28 which is the mathematical statement of Maxwell’s law.
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The reciprocal relationship remains valid between the rotations
caused by two unit couples as well as between the deflection and the
rotation caused by a unit couple and a unit force, respectively.

Summary

In this chapter we have learned that the work done by a force P (or cou-
ple M) during a displacement A (or rotation #) of its point of application
in the direction of its line of action is given by

A
W= J PdA (7.1)
a
or
W= J: M df (7.4)

The principle of virtual work for rigid bodies states that if a rigid
body is in equilibrivm under a system of forces and if it is subjected to
any small virtual rigid-body displacement, the virmal work done by the
external forees is zero.

The principle of virtual forces for deformable bodies can be mathe-
matically stated as

W = Wy (7.16)

in which W, = virtual external work done by virtual external forces (and
couples) acting through the real external displacements (and rotations) of
the strocture; and W, = virtual internal work done by the virtual in-
ternal forces (and couples) acting through the real internal displacements
[and rotations) of the strocre.

The method of virtual work for determining the deformations of
structures is based on the principle of virtual forces for deformable
bodies. The method employs two separate systems: (1) a real system of
loads (or other effects) causing the deformation to be determined and
[2) a virtual system consisting of a unit load (or unit couple) applied at
the point and in the direction of the desired deflection (or rotation). The
explicit expressions of the virtual work method to be wsed o determine
the deflections of trusses, beams, and frames are as follows:

Truses 1[A) = Eﬂ(%) (7.23)
L MM

Beams 1(A) = L o (7.30)

Frames 1{A)= En(%) + EJ ME‘IM dx (7.35)

The principle of conservation of energy states that the work per-
formed by statically applied external forces on an elastic structure in
equilibrium is equal to the work done by internal forces or the strain
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energy stored in the structure. The expressions for the strain energy of
trusses, beams and frames are

Trusses U= E‘:E (7.41)
Beams U= MEEJ:: (7.44)
Frames U= E + EJ (7.48)

Castigliano’s second theorem for linearly elastic structures can be
mathematically expressed as

v L = 7.50
or i ( )

The expressions of Castigliano’s second theorem, which can be wsed to
determine deflections, are as follows:

Trusses ‘A=Y :g—ij — (7.59)
Beams A = J: :i_“;) M i (7.60)
Frames A=Y Hg’j > J( ) dx  (7.62)

Maxwell’s law of reciprocal deflections states that, for a linearly
elastic structure, the deflection at a point {/ due to a unit load applied at
a point f is equal to the deflection at § due to a vnit load at .
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