


Deflection of Beams
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Deformation of a Beam Under Transverse Loading

| = p— ..l' &
7 e e A | T e

Relationship between bending moment and
curvature for pure bending remains valid for
general transverse loadings.

1 M(x)

Yo, El

Cantilever beam subjected to concentrated

load at the free end,
1_ M

Yo, El

Curvature varies linearly with x

1
At the free end A, p—=0, py=>
4

1

El
At the support B, — #0,
PB

PL

pB|=




Deformation of a Beam Under Transverse Loading
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Overhanging beam
Reactions at A and C

Bending moment diagram

Curvature 1s zero at points where the bending
moment is zero, 1.¢., at each end and at £

| :M(x)

o, ET

Beam 1s concave upwards where the bending
moment is positive and concave downwards
where it 1s negative.

Maximum curvature occurs where the moment
magnitude 1s a maximum.

An equation for the beam shape or elastic curve
is required to determine maximum deflection
and slope.




Equation of the Elastic Curve

y * From elementary calculus, simplified for beam
parameters,
O X d2
yk) y_A 0x) | e e
. . ,l Q o dx Y
; | P

 Substituting and integrating,
2
EIl - E]d—%/ = M (x)
P dx

X
EI0~EI% - [ M(x)ax+ G
dx 7

X X
Ely= Idij(x)dx +Cix+ Cy
0 O
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Equation of the Elastic Curve

* Constants are determined from boundary
conditions

X X
E[yzj‘de‘M(x)dx+C1x+C2
0 0

» Three cases for statically determinant beams,

— Simply supported beam
y4=0, yp=0

— Overhanging beam
y4=0, yp=0

y — Cantilever beam
VA= 0, QA =0

* More complicated loadings require multiple
integrals and application of requirement for
continuity of displacement and slope.
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Direct Determination of the Elastic Curve From the
Load Distribution

!

» For a beam subjected to a distributed load,
dM d°M _dv
- =4 ()

aM _y
o =) 22 dv

* Equation for beam displacement becomes

2 4
WM :Eluz—w(x)
dx? dx?

 Integrating four times yields
El y(x)= —J‘ dxj dxj dxj w(ox )dx

+ %CIJC:3 + %szz + C3)C + C4

* Constants are determined from boundary

l"/‘\:()l [.’/H:()] ..
conditions.

[My=10] [Mg= 0]

(b) Simply supported beam
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Statically Indeterminate Beams

« Consider beam with fixed support at A and roller
support at B.

* From free-body diagram, note that there are four
unknown reaction components.

» Conditions for static equilibrium yield
SF,=0 YF,=0 YM,=0

The beam i1s statically indeterminate.

» Also have the beam deflection equation,

X X
Ely= deJM(x)dx +Cix+ Gy
0 0
which introduces two unknowns but provides
three additional equations from the boundary
conditions:

Atx=0,0=0y=0 Atx=L,y=0
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For the prismatic beam and the loading shown (Fig. 9.16), determine the EXAMPLE 9.03

slope and deflection at point D.

I)

We must divide the beam into two portions, AD and DB, and deter-
mine the function y(x) which defines the elastic curve for each of these '_ L4 .,1. 31/4

portions.

1. From A to D (x < L/4). We draw the free-body diagram of A? 7 B

a portion of beam AE of length x < L/4 (Fig. 9.17). Taking moments R i
about E, we have Fig. 9.16
3P
M, = Tx (9.17) v,
or, recalling Eq. (9.4), A Dl ) M,
g A E
d%, 3
EI —— = ~px (9.18) X
dx* 4 ;
'_]J
where y,(x) is the function which defines the elastic curve for portion AD 4
of the beam. Integrating in x, we write Fig. 9.17
dy, 3
EI 8, = EI —~ = =Px*+ C, (9.19)
18,
EI Y= gPI #Cix + Cy (9.20)

2. From D to B (x > L/4). We now draw the free-body diagram
of a portion of beam AE of length x > L/4 (Fig. 9.18) and write

3P L
My=—x— P(x — —) (9.21)
4 4
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Fig. 9.19
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or, recalling Eq. (9.4) and rearranging terms,

d*y: 1 1
El —2 = — Zpr + ~PL (9.22)
dx~ 4 4

where y5(x) is the function which defines the elastic curve for portion DB
of the beam. Integrating in x, we write

dys, 1 1
EIf, = EI > g gf’x2 +JPLx + G (9.23)
L. 1_
Ely, = — an + gPLx' + Cyx + Cy (9.24)

Determination of the Constants of Integration. The conditions
that must be satisfied by the constants of integration have been summarized
in Fig. 9.19. At the support A, where the deflection is defined by Eq. (9.20),
we must have x = 0 and y; = 0. At the support B, where the deflection is
defined by Eq. (9.24), we must have x = L and y; = 0. Also, the fact that
there can be no sudden change in deflection or in slope at point D requires
that y; = y, and 6, = 6, when x = L/4. We have therefore:

x=0,y, =0],Eq.(9.20): 0= C, (9.25)
[ i ], Eq. ( ) 2

[x=L,y2 = 0],Eq.(9.24): 0= 11—2PL3 + C3L + C,4 (9.26)
[x = L/4,0, = 6], Egs. (9.19) and (9.23):

3 g
—PL:+ C; = —PLY + C; (9.27)
128 128




[x = L/4,y, = y,], Eqgs. (9.20) and (9.24):

PL? N N . i
— Cl_ - 1 C3_ + C4 (9.28)
512 4 1536 4

Solving these equations simultaneously, we find

7PL? 11pPL° pL}?
Ci=— , Cs 0, =& G4 = ——
128 128 354
Substituting for C, and C, into Eqs. (9.19) and (9.20), we write that for
£ = Fi4
3_. TPL*
EI 9, = —Px* — (9.29)
8 128
iy 7"
Ely, = —Px" — x (9.30)
8 128

Letting x = L/4 in each of these equations, we find that the slope and
deflection at point D are, respectively,

PL? 3PL?

e, = o d = =
D= T3pr MY YD T T os6Er

We note that, since 8, # 0, the deflection at D is not the maximum
deflection of the beam.
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Sample Problem 9.1

SOLUTION:

* Develop an expression for M(x)
and derive differential equation for
elastic curve.

W14x68  I1=723in* E=29x10%psi  Integrate differential equation twice
and apply boundary conditions to

P=50kips L =151t a=4ft i .
obtain elastic curve.

For portion AB of the overhanging beam, « Locate point of zero slope or point

(a) derive the equation for the elastic of maximum deflection.

curve, (b) determine the maximum

deflection,  Evaluate corresponding maximum
(c) evaluate y, .. deflection.

=

b | = p— ..l' &
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Sample Problem 9.1

_.-..::. . I . P :
B 13.‘--'.-'1-_,:_!.-...-".‘!,.__-".'-'".-'.- i B L Er

R,=P1

SOLUTION:

* Develop an expression for M(x) and derive
differential equation for elastic curve.

Reactions:

Pa a
R,=—=) Ro,=P1+Z |7
=220 s ( 2

From the free-body diagram for section AD,

M:—P%x (0<x<L)

The differential equation for the elastic
curve,

2
g4 - p

9y
dx2 L




Sample Problem 9.1

Y

'] = o ..:
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 Integrate differential equation twice and apply

boundary conditions to obtain elastic curve.

Y -_lpa2,c
dx 2 L

1 —a 3
Ely=—-P—x"+Cix+C
y 6 1 1 2
atx=0,y=0: C, =0

atx:L,y:O: OI—lPEL:S-i-CIL CIIlPaL
6 L 6

Substituting,
2
g lpa 2 1p, & _Pd 1—3(%
i 2 L 6 dx  6EI L

1 1

Ely=—-P%%% + - Palx
6 L 6

_PaL2 i_(ﬁf
d 6Kl | L \ L




Sample Problem 9.1

» Locate point of zero slope or point
of maximum deflection.

2
dy:o_P"L[p{xmj ] Xy = = =0.577L

dx ~ 6EI L J3
_ Pal? x ( x T . ljvglu'cz.te corresponding maximum
Y= |17\ 1 eflection.

2
PalL 3
Vmax = [0.577 —(0.577) ]

2
Pal
Ymax = 0.0642 CEl

(50kips )(48in )(180in)*

Ymax =0:0042 6(29x10°psi |723in*

Ymax = 0.2381n

'] = o ..:
r o i = e 1 o
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Sample Problem 9.3

SOLUTION:

* Develop the differential equation for
the elastic curve (will be functionally
dependent on the reaction at A).

 Integrate twice and apply boundary
For the uniform beam, determine conditions to solve for reaction at A
the reaction at A4, derive the and to obtain the elastic curve.
equation for the elastic curve, and
determine the slope at A. (Note that  « Evaluate the slope at A.
the beam is statically indeterminate
to the first degree)

b | = p— ..: &
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Sample Problem 9.3

l )M

"-' .- I'. L 9 - 1?_‘J_:'T¢:!,.:‘;|;IHILF|:LII_;E§1;_LﬂJ¢L:-J

= X
) = f['{)
L

» Consider moment acting at section D,

« The differential equation for the elastic
curve,
2 3
E1%Y 2 pp = Ry 0
dx? 6L




Sample Problem 9.3

g

 Integrate twice
[x=L,0=0]

SR £ 0y T S S LS
. dx 2 241
5
1 3 Wox
Ely=-R,x -
Y76 T oL

4

+C1)C+C2

 Apply boundary conditions:

) ; pply ry

E[%:M:RM—W‘)X atx=0,y=0: Cy=0
X

atX:L,QZO: l]214[12—2—4‘(;120

atx=L,y=0: —RAL3—

e Solve for reaction at 4

Yr3— Lot =o Loz ?
3 30

_.-.-::- e 3 Fax B ¥
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Sample Problem 9.3

* Substitute for C,, C,, and R, in the
elastic curve equation,

1( 1 3 WX (1 3j
” " Elyv=—|—wyl |x~ — — wnl™ |x
| L | Y 6(10 0 ) 120L \120"0

X

o

= (—xs +2L2 3—L4x
120EIL

y

 Differentiate once to find the slope,

_dy _ (—5x4+6L2 2—L4)
dx 120EIL
3
at x=0, 0, = woL
120FE]

—eatead - 19.‘:':*?,_-_.;!;.;':1,_,3:“':';'!_:-5']:":—;_-'1-:-';}




EXAMPLE 9.04

w
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The simply supported prismatic beam AB carries a uniformly distributed
load w per unmit length (Fig. 9.21). Determine the equation of the elastic
curve and the maximum deflection of the beam. (This is the same beam

and loading as in Example 9.02.)
Since w = constant, the first three of Eqs. (9.33) yield

d
El 4 Ngw
dx*
%y
El —=V(x)= —wx + C
dx3 ( ) 1
dy I 5
B — WM(x) = ——wx® + Cx + C, (9.34)
dx~ 2

Noting that the boundary conditions require that M = 0 at both ends of
the beam (Fig. 9.22), we first let x = 0 and M = 0 in Eq. (9.34) and
obtain C; = 0. We then make x = L and M = 0 in the same equation

and obtain C; = jwL.
Carrying the values of C, and C; back into Eq. (9.34), and integrat-

ing twice, we write

y 1
El — = ——wx” + —wLx
dx* 2 2
EI ﬁ — lwx3 + lex‘ + 6
dx 4 2
L e 3
Ely= — —uwx" + EwLx + C3x + Cy (9.35)




But the boundary conditions also require that y = 0 at both ends of the
beam. Letting x = 0 and y = 0 in Eq. (9.35), we obtain C; = 0; letting
x = L and y = 0 in the same equation, we write
0= — fwL! + SwL' + C,L
C3 " ¥ '_?'_lijs

Carrying the values of C3 and C; back into Eq. (9.35) and dividing both

members by EI, we obtain the equation of the elastic curve:
y = ——(—x* + 2Lx* — L) (9.36)
24E1

The value of the maximum deflection is obtained by making x = L/2
in Eq. (9.36). We have

5wl’

Ylwax = 35451

-._-e.:",',;{!.-:..rhu'ﬂ-'lﬂ.r.-ﬁr-r_r'hl:-.r




oyl (S p o
W OlKo ki DY 3lro 31 ookl b

9 N9




Method of Superposition

150 kN _ P = 150 kN
20 kN/m

w = 20 kN/m

Principle of Superposition:

» Deformations of beams subjected to * Procedure is facilitated by tables of
combinations of loadings may be solutions for common types of
obtained as the linear combination of loadings and supports.
the deformations from the individual
loadings

P ; & s B :
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Sample Problem 9.7

R S B
Lf Li2 *—L L/2 —>|

SOLUTION:

For the beam and loading shown,
determine the slope and deflection at
point B.

Superpose the deformations due to Loading /and Loading I/l as shown.

!Il

.\

RO - 24__,__;

w

Loading 1 Loading 11

dEER!

e

- e} b 4 o
e X O e L




Sample Problem 9.7

Loading 1

Loading /
wL3 wL4
9 = —_— S
Loading Il
wL3 wL4
9 = =
6c) ASET el 128E]

In beam segment CB, the bending moment is
zero and the elastic curve is a straight line.

wL3

0); =0c), = ——
(B)]] (C)][ ARE]

Fp— . - ey B -
it gpeutd - 25.‘.-.*?,_-,:_!.-....-'_1'.__-"."".-'.- |."Efﬂf—".__"_l'r"u—-.-

(YB )]1

= + — | =
128EI 48EI 384E]

wL*  wD (Lj_ 7w
2




Sample Problem 9.7

Loading 1

w

Combine the two solutions,

2 wh
0r = (0 Or), =—2
5 =(0p)r +0p)y 6El  43EI
VB :(J’B) +(yB) Z—WL4 + TwL'
1 I gpr  384E]

"-' .- I'. L 9 - z%kQLFIEHIWIHJIT;E&I—L‘#J#&J

Loading 11

B

TR B

-:‘:'_/L(f)ﬂ).-'

L YBln

7 WL3

Op =——
48E]
41wt
VB = 384 E1

X




Application of Superposition to Statically
Indeterminate Beams

* Method of superposition may be e Determine the beam deformation
applied to determine the reactions at without the redundant support.
the supports of statically indeterminate
beams. e Treat the redundant reaction as an
unknown load which, together with
» Designate one of the reactions as the other loads, must produce
redundant and eliminate or modify deformations compatible with the

ae support. original supports.

& ..: 1 - e B
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Sample Problem 9.8

For the uniform beam and loading shown,
determine the reaction at each support and
the slope at end A.

SOLUTION:

« Release the “redundant” support at B, and find deformation.

» Apply reaction at B as an unknown load to force zero displacement at 5.

A09-28

= p— o i &
e X O e L




Sample Problem 9.8

w

 Distributed Loading:

ook (o4 23] (3]

4
_ 0011327
El

Redundant Reaction Loading:

2 2 3

Ry (2 V(L Rpl

_ B (20 (£ 20016467 B
(8 3EIL(3 )(3) El

For compatibility with original supports, y;=
0

wL* Ry
0= =-0.01132— +0.01646 -3~
(yB)W +(v5)g zl T £l

Rz =0.688wL T

From statics,

R,=027IwLT  R-=0.0413wL T

ruitd - A;thbjéfhkf:“':'flf:ﬁ'":—;_F .I':'"u:-.-




Sample Problem 9.8

Slope at end A4,

3 3
wL wi
O04)yy =7 =—0.04167—
O 24E] El
2 3
O =" (éj ‘i —(5) ~0.03308 "%
6EIL \3 3 zl
04=004)., +(04),=-0 ()4167W_L3_,_()()3398W_L3 0. ——0 00769WL3
AT A AR T T R AT R

ettt - SQ.JJ.:'T,_-,:!.-:JEIJLF':'JI_:-F'{‘:—H*J#L:U
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Moment-Area Theorems

» Geometric properties of the elastic curve can
be used to determine deflection and slope.

* Consider a beam subjected to arbitrary loading,

do dy M M
= % 10 = — dx
ix N NEI TR
X
(Op (*0 M
g = ‘ — dx
g l.. EI
("> M
91_) - 9(_' — ' ﬁ clx

o First Moment-Area Theorem:

O0p/c = areaunder (M/EI)diagram between
Cand D.

Lt ke sels :
pewid = 3% 7, eteard S5 I."E.ﬂf—';_"_l':"'u-.-

i
]




Moment-Area Theorems

» Tangents to the elastic curve at Pand P’ intercept a
segment of length dfon the vertical through C.

M : .
tep= | X ﬁt/.\' = tangential deviation of C

P J. :
\ - with respect to D

» Second Moment-Area Theorem:

L The tangential deviation of C'with respect to D

| ¥ 1s equal to the first moment with respect to a
vertical axis through C of the area under the
(M/EI) diagram between C'and D.

7T el e W | .'-:-*u'-'.-




Application to Cantilever Beams and Beams With
Symmetric Loadings

l)

[angent at D

Yp = tpa

\

Reference tangent

i HI) = Hl )/ A

Horizontal

Yp

tpic

/ /
Op = 0pic

Reference tangent

=i el . = o "
watend " 3‘-‘-;-.-'?,_-_.:_!.-—...-".1,___-"."".-'.- I."E.ﬂf—';_"_l':"'u-.-

« Cantilever beam - Select tangent at A as the

reference.

* Simply supported, symmetrically loaded
beam - select tangent at C as the reference.

Yp = Ipiec — tpe-




ST

Shape

Area

C

Rectangle

bh

Triangle

bh
9

[ ] Rl

Parabolic
spandrel

_...,
w|=

=l

Cubic
spandrel

T
.x_|_

S ey

General
spun(lr(‘l

)
=

+

Y- 35 g
e

2 A ] g
sy =
o .':"*u—.-

Bending Moment Diagrams by Parts

* Determination of the change of slope and the
tangential deviation 1s simplified if the effect of
cach load 1s evaluated separately.

» Construct a separate (M/EI) diagram for each
load.

- The change of slope, 6, 1s obtained by
adding the areas under the diagrams.

- The tangential deviation, #,,-1s obtained by
adding the first moments of the areas with
respect to a vertical axis through D.

« Bending moment diagram constructed from
individual loads 1s said to be drawn by parts.




Sample Problem 9.11

SOLUTION:

» Determine the reactions at supports.

 Construct shear, bending moment and
(M/EI) diagrames.
For the prismatic beam shown,

determine the slope and deflection at £ * Taking the tangent at C'as the
reference, evaluate the slope and

tangential deviations at £.

& ..: . - i l_: -
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Sample Problem 9.11

SOLUTION:

» Determine the reactions at supports.

RB ZRDZWCI

 Construct shear, bending moment and

(M/EI) diagrames.
4 __wa2 £ __wazL
YA AE]
2 3
1{ wa wa
== Y ()=
3| 2E1 6E]

il 3{.I---.-".',_-__;!.a-.|.".'l,'_-l"'."'".-'.--I:I:-';"".-—,"_-l" .'-:-":-'.-




Sample Problem 9.11
 Slope at E:

O =0c +0g/c =0/ c

M|
EI
|
B
A
wazL wa3
wa’ A4FEI 6FE]
 9FI { >
Op =— 3L +2a
E LHH( )
Reference tangent DIC tpc ° DeﬂeCtion at E:
[t
i 4 4 4
| wa L B wa’I? B wa” B __ wa’I?
A4E] 16El 8EI 16E]

3
wda
__ WYy
VE 8EI( +a)

.- o .38 3 Fax B ¥
i -.‘-r:'j,_-.:_!r.-r':l,_;':"":'.-l:l-';'":—;_-'.'-:-'u:.-




Application of Moment-Area Theorems to Beams With
Unsymmetric Loadings

 Define reference tangent at support A. Evaluate 6,
by determining the tangential deviation at B with
respect to A.

{B/A
- &
l.

 The slope at other points is found with respect to
reference tangent.

(9D ZHA +HD/A

e The deflection at D1s found from the tangential
deviation at D.

D
i EF HB e N
= or EF = —tg
¥ L L
E
. . o X
\ i yp = ED — EF = tp, — I_’B,n
D - 391:..’:,_-__;!.:.;':1,'_-':*":':7.4-2":-;_-' .I':'"u:-.-




Maximum Deflection

Refere n('(’/

target e

o AI‘G‘(I === H[\/‘\ e == 9_\

X

L
]

—

:l.'.-:.!"_"'-l:'l.r‘r-'wl'-l" I_-E'ﬂ_-_".__l"' .I-.-":-'.-

Maximum deflection occurs at point K
where the tangent 1s horizontal.

GK — 9‘\ = () — 0‘\ — _9'\

Point K may be determined by measuring
an area under the (AM/EI) diagram equal
to-60,.

Obtain y,, ., by computing the first
moment with respect to the vertical axis
through A of the area between A and K.




Use of Moment-Area Theorems With Statically
Indeterminate Beams

« Reactions at supports of statically indeterminate
beams are found by designating a redundant
constraint and treating it as an unknown load which
satisfies a displacement compatibility requirement.

e The (M/EI) diagram 1s drawn by parts. The
resulting tangential deviations are superposed and
related by the compatibility requirement.

« With reactions determined, the slope and deflection
are found from the moment-area method.

sl -4l =

s
]

P AL o Al
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6.6 Conjugate-Beam Method

et a1 T,ﬁ:ﬂ-_f'ym

The conjugate-beam method, developed by Otto Mohr in 1868, generally
provides a more convenient means of computing slopes and deflections
of beams than the moment-area method. Although the amount of com-
putational effort required by the two methods is essentially the same, the
conjugate-beam method is preferred by many engineers because of its
systematic sign convention and straightforward application, which does
not require sketching the elastic curve of the strocture.

The conjugate-beam method is based on the analogy between the re-
lationships among load, shear, and bending moment and the relatonships
among M /ET, slope, and deflection. These two types of relationshi ps were
derived in Sections 5.4 and 6.1, respectively, and are repeated in Table 6.1
for comparison purposes. As this table indicates, the rdationships be tween
M /EI, slope, and deflection have the same form as that of the relation-
ships between load, shear, and bending moment. Therefore, the slope and
deflection can be determined from M/ ET by the same operations as those




TAELE B.1

Load—Shear—Bending Moment M [ El-Slope—Deflection
Relatonships Reltonships

s _ . @n_M

dx dx ~ El
M _ d*M dv_ o dv M
x> T e " & dc H

performed to compute shear and bending moment, respedively, from the
load. Furthermore, if the M/ EI diagram for a beam is applied as the load
on a fictitiows analogous beam, then the shear and bending moment at
any point on the fictitous beam will be equal to the slope and deflection,
respectively, at the corresponding point on the original real beam. The
fictiious beam is referred to as the confugaie beam, and it is defined as
follows:

A comugate beam corresponding to a real beam 1s a fichtious beam of the
same kength as the real beam, but 1t 15 extemally supported and internally
connected such that if the conjugate beam & loaded with the M /ET dia-
gram of the real beam, the shear and bending moment at any pomt on the
conjugate beam are equal, respectively, to the slope and deflection at the
corresponding point on the real beam.

As the foregoing discussion indicates, the conjogate-beam method es-
sentially involves computing the slopes and deflections of beams by com-
puting the shears and bending moments in the corresponding conjugate
beams.
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supports for Conjugate Beams

External supports and internal connections for conjugate beams are deter-
mined from the analogous relationships between conjogate beams and the
corresponding real beams; that is, the shear and bending moment at any
point on the conjugate beam must be consistent with the slope and de-
flection at that point on the real beam. The conjugate counterparts of the
various types of real supports thus determined are shown in Fig. 6.12. As
this figure indicates, a hinged or a roller support at an end of the real
beam remains the same in the conjogate beam. This is becanse at such a
support there may be slope, but no deflection, of the real beam. Therefore,
at the corresponding end of the conjugate beam there must be shear but
no bending moment; and a hinged or a roller support at that end would
satisfy these conditions. Since at a fixed support of the real beam there is
neither slope nor deflection, both shear and bending moment at that end
of the conjugate beam must be zero; therefore, the conjugate of a fixed
real support & a free end, as shown in Fig 6.12. Conversely, a free end of
a real beam becomes a fixed support in the conjugate beam because there
may be slope as well as deflection at that end of the real beam; therefore,
the conjugate beam must develop both shear and bending moment at that
point. Al an interior support of a real beam there is no deflection, but the
slope is contimuows (ie., there is no abropt change of slope from one side

L e T
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Procedure for Analysis

The following step-by-step procedure can be used for determining the
slopes and deflections of beams by the conjugate-beam method.

1. Construct the M/ET diagram for the given (real) beam sub-
jected to the specified (real) loading. If the beam is subjected to
a combination of different types of loads (e.g., concentrated
loads and distributed loads), the analysis can be considerably
expedited by constructing the M /El diagram by parts, as dis-
cussed in the preceding section.

2. Determine the conjugate beam corresponding to the given real
beam. The external supports and internal connections for the con-
jugate beam must be selected so that the shear and bending moment
at any point on the conjugate beam are consstent with the slope
and deflection, respectively, at that point on the real beam. The
conjugates of various types of real supports are given in Fig. 6.12

3. Apply the M /EI diagram (from step 1) as the load on the con-
jugate beam. The positive ordinates of the M/El diagram are
applied as upward loads on the conjugate beam and vice versa.

4. Calculate the reactions at the supports of the conjugate beam
by applying the equations of equilibrium and condition (if any).

5. Determine the shears at those points on the conjugate beam
where slopes are desired on the real beam. Determine the bend-
ing moments at those points on the conjugate beam where de-
flections are desired on the real beam. The shears and bending
moments in conjugate beams are considered to be positive or
negative in accordance with the beam sign convention (Fig. 5.2).

6. The slope at a point on the real beam with respect o the un-
deformed axis of the real beam is equal to the shear at that point on
the conjugate beam. A positive shear in the conjugate beam denotes
a positive or counterclockwise slope of the real beam and vice versa.

7. The deflection at a point on the real beam with respect to the
undeformed axis of the real beam is equal to the bending mo-
ment at that point on the conjugate beam. A positive bending
moment in the conjugate beam denotes a positive or upward
deflection of the real beam and vice versa.
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Determine the slopes and deflections at points B and C of the cantilever beam shown in Fig. 6.14(a) by the conjugate-
beam method.

Solution
M/EI Diagram. This beam was analyzed in Example 6.3 by the moment-area method. The M/El diagram for a ref-

erence moment of inertia £ = 3,000 in.? is shown in Fig. 6.14{bj.
con i
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Conjugate Beam, Fig. 6.14(c) shows the conjugate beam, loaded wath the M/ EF diagram of the real beam. Note that
poant A, wﬁghhﬁ:qﬁmttprmlbnm,bmumﬁmunt&mnjngmhm,whmpdntﬂ which is frec on the real
beam, becomes fixed on the conugate beam. Because the M /ET diagram is negative, it1s applied as a dowmward load
on the conjugate beam.
Slope at 8. The slope at & on the real beam s equal to the shearat & in the conjugate beam. Using the free body of the
conugate beam to the left of 8 and considering the external forces acting upward on the free body as positive, in ac-
oordance with the beam sign convention (sce Fig. 5.2), we compute the shear at 8 in the conjugate beam as
1 1 2625 kAt

+rx._ﬁ[-muus — 2 (150)(15)| = -

Therefore, the slope at B on the real beam is
2625 k-ft*

85 = i

Substituting the numerncal valuss of £ and §, we obtain

o 1,151'5[]2}1 -
= momaom ~ 00

Bg=00043 rad ) Hns,

Defiection at 8. The deflection at £ on the real beam is equal to the bending moment at 8 in the comjugate beam. Using
the free body of the conjugate beam to the left of 8 and considening the clockwise moments of the external forces about

oo i




B as positive, in accordance with the beam sign convention (Fig. 5.2), we compute the bending moment at & on the

conjugate beam as
i i 22500 k-ft?
+ U Ms = = |-100(15)(7.5) - 3(150)(15)(10)| = - ———
Therefomr, the deflection at B on the real beam is
_ ns0ks? | 225000127 ,
Ag=— El __(ﬂ,ﬂM][j,ﬂM]__ﬂ'dsm'
Ag =045in. | Ans.
Slope at €. Using the free body of the conjugate beam to the left of (', we determine the shear at C as
g z
+18 =%[—lmus] -%Usu]m] _;T(mu](m] A ‘%
Therefom, the slope at C on the real beam =
1,625 kft® 1,625(12)°
B —— == — _0.006 rad
) & [20.000) (3,000]
e = 0.006 tad ﬁ Ans.

Deeflection at C. Considering the free body of the conugate beam to the left of C, we obtain
+ CM:=]E[—1N{15][17-5] —%[15!]](15][20] —%[Zﬂ]](lﬂ][ﬁ.lﬂ']
55,420 k-ft?
———
Therefor, the deflection at C on the real beam &

_S5A kY 55420127
El T (29,000)(3,000)

Ap=111n | Ans.

A= —1.1 in.

Determine the slope and deflection at pomt £ of the beam shown in Fig. 6.15(a) by the conjugate-beam method.
Solution
MIEI Diagram. Sec Fig. 6.15(h).
Conjugate Beam. The conjugate beam, loaded with the M/EJ diagram of the real beam, is shown in Fig. 6.15[c).
Slope at £, Considering the free body of the conjuzate beam to the left of B, we determine the shear at 5 as
M ML
+1Se=g ) =Fr
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8. 615 (e1 Compugate Beam
Therefom, the slope at B on the real beam is
ML

g = ——

Er

eF% S Ans.

Deflection at 8. Using the free body of the conjugate beam to the left of 8, we determine the bending moment at B as
M Ly ME?
+|:MI=E':L](E)=_

2ET
Therefore, the deflection at B on the real beam is
MI?
2Ef
M2
Tl

v

Ag=

L e T
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Usz the comjugate-beam method to determine the slopes at ends 4 and D and the deflections at points 8 and C of the
beam shown in Fig. 6.16(a).

&0k 40 k
. | l
— I Ia =
| 01t —0adl 100
El = constani
E=180 k=i
F=46,000 in. %
{&) Real Beam

300
E{‘ 00
,f”/ .}-\?
5 oY
/ \\\
el D
e, B c bl
A4 } Py
[ 201t 10 fi 10 fi—
e (c) Conjugaie Beam
Solution

MJEI Diagram. This beamn was analyzed m Example 6.4 by the moment-area method. The M/El diagram for this beam
& shown in Fig. 6.16(b).

Conjugate Beam. Fig. 6.16{c) shows the conjugate beam loaded with the M/ES diagram of the real beam. Points 4 and
[, which are simple end supports on the real beam, remain the same on the conjugate beam. Because the MY EF dingram
& positive, it is applied as an upward load on the conugate beam.
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Reactions for Conjugate Beam. By applying the equations of equilibrium to the free body of the entire conjugate beam,
we obtain the following:

- ﬂ: EHD =1
. |
A,(40) — ;r [%(m:] (20) (T +m) + 600{10)(15)

+%(m](m] (33_':'+ m) +%(ﬁm](m] (%] =0

8,500 kA

Ay f;

+1TF=0

é [_a,suu +%{ﬂm1(m] + 600(10) +:-!(muj(mj

+ 3(@00)10)| - B, =0

9,500 k-ft”
b, <250k
Slope at 4. The slope at 4 on the ral beam is equal to the shear just to the right of 4 i the comugate beam, which is
_ _BS00 k-t?
+1 5o =—dy = -
Therefore, the slope at 4 on the real beam is
O ESMO KR 85000127
0= EI (1500)(46,000) Q01 rad
#, =0.015 rad “_*E Ans.
Slope at £. The slope at D on the real beam is equal to the shear just to the left of D in the conjugate beam, which is
_ g 9500 kA7
+ | 8Spp=+D =&
Therefore, the slope at 7 on the real beam 1=
x T
#ﬂ='§,5ﬂﬂk—ft 9,500(12) — 0017 rad

ET (1,800)(46,000]
Op=001Trad .~ Ans,

Deflection at 8. The deflection at & on the real beam is equal to the bending moment at & in the conjugate beam, Using
the free body of the conjugate beam to the left of B, we compute

+ (Mg = é [—E,ﬂ(m] +%Emu](m] G—ﬂ)] - _"6,666;? koAt

Therefore, the deflection at B on the real beam is

116,666.67 k-ft* _ 116,66667(12)° _
Er T [1.BOD)(46,000)
Ap=243in | Ans.

Ag= 243 m.

i ]




Deflection at C. The deflection at  on the real beam isequal to the bending moment at C in the conjugate beam. Using
the free body of the conjugate beam to the nght of C, we determme

3
+ Mc=é —9ﬂ(lﬂ]+%(ﬂ]}](lﬂ](¥)} =_%
Therefom, the deflection at C on the real beam =
_ SSO00 kAT 8S000(12)° .
fem T e "
Ac=17Tin. | Ans.

Determine the maximum deflection for the beam shown in Fig. 6.17(a) by the conjugate-beam method.

Solution

MJET Diagram. This beamn was previously analyzed m Example 6.5 by the moment-area method. The M/ EN diagram
for the beam is shown in Fig. 6.17(h).

Conjugate Beam. The smply supported conjugate beam, loaded with the M/EF diagram of the real beam, & shown in
Fig. 6.17(c).

Reaction at Support 4 of the Conjugate Beam. By applying the moment equilibrium equation 3 M- = 0 to the free
body of the entire conjugate beam, we determine

+ o Me=10
0 0
4019 -5 E(mu] (10) (]T+ s) +3400)(5) (]T)] =0
e 1,333.3;1:14 .m?

Location of the Maxdimum Bending Moment in Conjugate Beam. If the maximum bending moment in the conjugate beam
[or the maximum deflection on the real beam) ocours at point 0, located at a distance x,, from the left support 4 [=e
Fig. 6.17(c]), then the shear in the conjugate beam at D must be zero, Congdering the free body of the conjugate beam to
the left of D, we write

1 1
+1 8p= i [—l 33333 +E[¢ﬂx,,][x,,] =10
from which
Xm=H816m
Maximum Deflection of the Real Beam. The maximun deflection of the real beam is equal to the maximum bending
moment in the conjugate beam, which can be determined by considering the free body of the conjugate beam to the left
af [, with xm = £.16 m. Thus,
4 € Muss = Mp = |~1,333.33(8.16) + 1 (40)8.16) 2 218
Er ’ ’ 2 ’ 3

724451 kN - m?
ET

v s
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Therefore, the maximum deflection of the real beamis
724451 kN -m? 7244 .51
A= e e = — (101517 m = —51.7 mm
[ (200 700)
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AG. 6.18

Solution
MJEI Diagram, This beam was analyzed in Example 6.6 by the moment-area method. The M/ ET diagram for a refer-
ence moment of inertia [ = 2,500 in.* & shown in Fig. 6.18(b).

Conjugate Beam. Figum 6.18(c) shows the conjugate beam loaded with the M/ ET diagram of the real beam. Note that
points [ and £, which are ample interior supports on the real beam, become internal hinges on the conjugate beam;
point C, which is an internal hinge on the real beam, becomes a smple interior support on the conugate beam. Also
note that the positive part of the M/El diagram is applied as opward loading on the conjugate beam, whemas the neg-
ative part of the M/El dingram is applied as downward loading.

cevan mud
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Reaction at Support 4 of the Conjugate Beam. We determine the reaction 4, of the conjugate beam by applying the
equations of condition as follows
+H(TMP =0

4,(30) -5 (g) (20)(20) + C(10) +:l'e@r_ (10) ('3—") -0

G =24t I,IS:'.IST "
+(EM_=£=[I
141 1 /720 10
4,69 -5 () 2009 + 609 +3(F7) 00 (3+15)
150 1750
+ (905 +5 (F) 900 =0
or
454, +25C, = -3—"";?,'33 (2)
Substituting Eq. (1) into Eq. (2) and solving for 4,, we obtain
1,520.83 k4"
*“r='5T
Slope at 4. The slope at 4 on the real beam is equal to the shear just to the right of 4 in the conjugate beam, which is
¥4
+T&,=_Ay=_w

Therefore, the slope at 4 on the real beam is

_ 152083 1,52083(12)° _
== "oy ™
8, =0003 rad Ans.

Deflection at €. The deflection at © on the real beam is equal to the bending moment at C in the conjugate beam. Con-
sidering the free body of the comjugate beam to the left of C, we obtain

1 1 M0,416.67 k-1t
oMo =5 [-l,sm_ﬂ(mj +5(100)(20)(10 J] e
Therefore, the deflection at ¢ on the real beam &
WA667 kR 20416670127 ,
Ap=-— =-= = —0.487
© T (29,000 (2,500) -
Ac=0487 in. | e

Use the conjugate-beam method to determine the deflection at point C of the beam shown i Fig. 6.19(a).

Solution
MJEI Diagram. This beam was previously analyzed in Example 6.7 by the moment-arca method, The M/EN digram by
cantilever parts with respect to point 8 is shown in Fig. 6.19(b).
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I=2,000in* B
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A,l
500
Ef
I 30t =101t
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Conjugate Beam. See Fig. 6.19(c).
Reaction at Support A of the Conjugate Beam,
+{E M =0
11 oy 1 30
Ay(30) + 55 [;E‘Pﬂﬂ.‘r[?ﬂ}(T) —5(780)(30) (T)] =0
1,650 k"
Ay =

Er
Deflection at C. The deflection at © on the real beam is equal to the bending moment at © in the conjugate beam. Con-
sidering the froe body of the comugate beam to the left of C, we obtain

30
+ Mo =g | ~1,650(40) 5 (900)(30) (T+ m) +E{TH0)(30)(20)

—%tmmﬂ:&")]=m’;“3

Therefor, the deflection at C on the real beam =

_BS00 kR 65000127 :

Ae=—"7pr = 129,000)( =019 in

Ac=01%in | Ans.




Summary

In this chapter we have discussed the geometric methods for determining
the slopes and deflections of statically determinate beams. The differ-
ential equation for the deflection of beams can be expressed as

dy M
Fy' == (6.9)
The direct integration method essentially involves writing expression(s)
for MJET for the beam in terms of x and integrating the expression(s)
successively o obtain equations for the slope and deflection of the elastic
curve. The constants of integration are determined from the boundary
conditions and the conditions of continuity of the elastic curve. If a beam
is subjectad to several loads, the slope or deflection due to the combined
effects of the loads can be determined by algebraically adding the slopes
or deflections due to each of the loads acting individually on the beam.

The moment-area method is based on two theorems, which can be
mathe matically expressed as follows:

I

. M
First moment-area theorem: fHgq = J de (6.12)
A

B

M
Second moment-area theorem: Agpg = J E.Ed_: (6.15)
A

Two procedures for constructing bending moment diagrams by parts are
presented in Section 6.3

A conjugate beam is a fictiious beam of the same length as the cor-
responding real beam; but it is externally supported and internally con-
nected such that, if the conjugate beam is loaded with the M/ET diagram
of the real beam, the shear and bending moment at any point on the
conjugate beam are equal, respectively, to the slope and deflection at the
corresponding point on the real beam. The conjugate-beam method
essentially involves determining the slopes and deflections of beams by
computing the shears and bending moments in the corresponding con-

Jjugate beams.
PROBLEMS
Section 6.2 M
I/_\ B
6.1 through 66 Determine the equations for slope and de- H praly
flection of the beam shown by the dimct integration method.
El =constant. ‘?
I
1 e 1
ARG P&1

_.r_-.'.,- ,_.J_:-T'-.il!l:;'uﬂ'ﬂ}l;Tﬁl—u;.L’l:'J




et a1 T,ﬁ:ﬂ-_f'ym

Determine the equations for the slope and deflection of the beam shown in Fig. 6.2(a) by the direct integration method.
Also, compute the dope at cach end and the deflection at the midspan of the beam. ET is constant.

I : |
fu)
P ow
P lHHrHH .
= Wil "
Ay 3 B, >
L
2
AL 6.2 ih)

+—=%F =0 A, =0

+C o Mp=0
—40)+u)3) =0 4=251
S1ER=0

L
(WT)—[WL}+3y=“ B==1

Equation for Bending Moment. To determine the squation for bending moment for the beam, we pass a section at a dis-
tance x from sapport 4, as shown m Fig. 6.2[b). Considering the free body to the left of this section, we obtain

M =S = 9 (3) =S

Equation for MJEL The flewaral rigidity, Ef, of the beam is constant, s the equation for M /EF can be written as
d’].l_ M

W
- m I




Equations for Slope and Deflection. The eguation for the slope of the elastic curve of the beam can be obtained by inte-
grating the equation for M /EF as

The constants of integration, £ and O, are evaluated by applying the following boundary conditions:
Atend 4, x=0, y=0
Atend B, x=1r =0

By applying the first boundary condition—that is, by setting x = 0 and v = 0 in the equation for y—we obtain C; = 0.
Mext, by using the second boundary condition—that is, by setting x = L and y =0 in the equation for »—we obtain

2EIN 6 12
from which
L3
e
Thus, the equations for slope and deflection of the beam are
w fIx* X I*
"=E(T‘T‘ﬁ) M Ans.
wx x© LY
”=lm(""‘2‘?‘7) D Ans.
Slopes at Ends 4 and B. By substituting x =0 and L, respectively, into Eq. (1), we obtain
3 15
EA=—WEF or HA:;_H MS.
L L
o el T os
Deflection at Midspan. By substituting x= L/2into Eq. [2), we obtain
Swld Swlt
o= mE O YT mE ! —

Determine the slope and deflection at point & of the cantilever beam shown in Fig. 6.3(a) by the direct integmtion method.

Solution
Equation for Bending Moment. W e pass a scction at a distance x from support 4, as shown in Fig. 6.3(h). Considering
the free body to the right of this section, we write the equation for bending moment as

M = —15{20 — x)

.._J;m}:.,unfm;rﬁﬂym
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15k

A l 8
| 0k
El = constant
E =29,000 ksi
I =758m?
(a)
My =300 k-fi i 15k
I
(N :
A
A= 15K
-X-
{20 —1}
. 6.3 )
Equation for MEL
&Sy M 15
e L

Equations for Slope aml Deflection. By integrating the equation for M /EJ, we determine the equation for slope as

0-2 E(:wx— E)+.*:.

& H 2
Integrating once more, we obtain the equation for deflection as
15 =
y= _E(mf—"?) +0x4+ G

The constants of integration, € and C7, are evaluated by usng the boundary conditions that # =lat x=0,and y =10
at x = (1. By applying the first boundary condition—that 1s, by stting # = 0 and x = 0 in the equation for #—we obtain
Cy =0, Smmilarly, by applying the sscond boundary conditon—that 1s, by setting ¥ = 0 and x = 0in the equation for
y—we obtain {3 = (. Thus, the equations for slope and deflection of the beam are

Slope and Diflection at End B, By substituting x = 20 ft, E = 29.000(12%) ksf, and [ = 758/(12*) ft* into the foregoing
equations for slope and deflection, we obtain
g = —0.0197 tad ar Hg =0.0197 rad :é Ans,
J.'j=—ﬂ.162ft=—3_l4i1:l. or _'|.'n=3]4'i.1:|._|_ Ans,




Determine the slopes and detlections at points 8 and C of the ﬂrtﬂntrhmmahnmhlﬁg. 6.5(a) by the moment-arca
method

Solution
Bending Moment Diagram. The bending moment diagram for the beam is shown in Fig. 6.5(b).

e f}fﬂhﬂ?'ﬂ;Tﬁl—thﬂf




Wk
A B
all J | G
I B C I
| 13 ft—— 10— 200
I=6000in4 f=3,000mn4
E = 20,000 ksi —S5a0
(a} (b} Banding Moment Dingrom (k-i)
|mA ﬂ; c Tangent at & Tangent at A
e A J
250 00
H El

{c) ;’; Dmgmm'[ ke “ with 1 = 3,000 in4)
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MEL Diagram, Asindicated in Fig. 6.5(a], the values of the moment of inertia of the segments 4 8and BC of the beam
are 6000 in.* and 3,000 in.#, respectively. Using [ = Iy = 3,000 in. * as the reference moment of inertia, we express [ig
m terms of [ as

L ag = 6,000 =2{3.000) =2f
which indicates that in order to obtain the M /£l dingram in terms of £/, we must divide the bending moment disgram
for segment A8 by 2, as shown in Fig. 6.5(c).
Elstic Curve. The clastic curve for the beam is shown in Fig. 6.5(d). Note that because the M /ET diagram is negative,
the beam bends concave downward. Since the support at A is fixed, the slope at 4 iszero [y = 0); that &, the tangent to
the clastic curve at 4 15 honzontal, as shown m the figurc.
hﬂ& Wiﬂ:ltbzﬂcpcatAhnwu,“mndﬂ.mncthcdup:ntBbjﬂﬂmgth;dmngcmﬂupﬂu between 4
and B (which is the angle between the tangents to the elastic curve at points 4 and 8, asshown m Fig. 6.5(d]). Acconding
to the first moment-area theorem, #p, = area of the M El diagram between 4 and 8. This area can be comemently
eviluated by dividing the M /EI dingram into trivngular and rectungular parts, as shown in Fig. 6.5(c). Thus,

Hgg= JEItf_ [:101;1}{15] +%{1m]us]] = %‘Fﬂz
From Fig. 6.5d), we can see that because the tangent at 4 is honzontal (in the direction of the undeformed axis of
the beam), the slope at B(fs) is equal to the angle S, between the tangents at 4 and B, that is,
P 2625 k7 =z,ﬁ:5(1111 k-in?
EI El
Substituting the numerical values of £ = 29 000 ksi and [ = 3,000 in.*, we obtain
2.625012)°

# 0m)2 000
g = 00043 rad ‘Q Ans.

rad = 00043 rad

e fkc;}:gﬂﬂ-'lﬂ,'rﬁr-w'kih
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Deflection at 8. From Fig. 6.5(d), it can be seen that the deflection of §with respect to the undeformed axis of the beam
i equal to the tangential deviation of & from the tangent at A4; that i,

Ag=Aga
According to the second moment-anea theorem,
Apy = moment of the area of the M/EF diagram between 4 and 8 about 8

22 500 k-ft?
=é[(lm](lﬁ]ﬁ.ﬁ]+%E]m](15]tlﬂ] =,5T

22 500 k-ft?
ﬂu—ﬁm—T

_22.500(123)°
T (29 000)(3 000)
Ag=045in. | Ans.

Slope at €. From Fig. 6.5(d), we can sec that

=0451in.

ﬂf_‘:ﬂu
where
By = arca of the M/El diagram between 4 and C

1,625 k-t
ET

- [(mums] +5(150)(15) + 3(200)(10)| =

TS
T H

__ (1)
= 15,000 3.000]
e = 0.006 rad ‘Q Ans.
Deflection at C. It can be seen from Fig. 6.5(d) that
Ar=4Ap,

8 = 8ca

= {0L.006 rad

whene
Ay = moment of the area of the M /EI diagram between 4 and C about

= é [(mu] (15)(7.5 +10) +%(mms](m+ 10) + %(ﬂlﬂ](lﬂ](ﬁ.m]

55,420 kR
=T E

55,420 kAt?
Er
55,420012)
~ 129.000)(3,000)
Ar=11in.] Ans.

Ac=Aca=

=1.11n
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Use the moment-arca method to determine the slopes at ends 4 and 0 and the deflections at points 8 and C of the
beam shown in Fig. 6.6(n).

Solution

MYEI D¥agram. Because Ef & constant along the kength of the beam, the shape of the M /Ef diagram is the same as
that of the bending moment disgram, The M /EJ diagram is shown m Fig. 6.6(b).

Ehlstic Corve. The elastic curve for the beam & shown in Fig. 6.6(c).

Bk 0k
A l l o
i = c o
| 208 b ton——i0n—]
El = constant
E = 1.800 ksi
I =46000in*

{c) Elastic Curve

AG. 6.6
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Slope at 4. The slope of the elastic curve is not known at any point on the beam, so we will use the tangent at support
A as the reference tangent and determine its slope, 8y, from the conditions that the deflections at the support points 4
and [ are zero. From Fig. 6.6(c), we can soc that
Apa
=
L
in which #; is assumed to be so small that tan &, = ;. To evaluate the tangential deviation A, we apply the second
miment-arca theorem:

Apg=moment of the area of the M/El diagram between 4 and D about [

Apa= % [:'T(mmu] (% +m) + %(mmu] (%+ m)

+m[m](,5]+:‘_!mmmm(%)]

340,000 k-t
=T B
Therefore, the slope at A is
g, _Apa _ 340000/ El _ 8,500 kA"
AL T 4@~ E
Substituting the numerical values of £ and [, we obtain
£,500012)°
fa= =015 rad
* = T1,800)(46.000)
8 =10.015 rad :E Ans.

Slope at £, From Fig. 6.6(c), we can sce that
o =8pa — 4
n which, according to the first moment-area theorem,
#p4 = area of the M/El diagram between 4 and D

111 1 1
== [E (800)(20) +(200)(10) + 600(10) +5(600)(10)

_lE,ﬂN]k—ftz
=T E
Thercfor:,
P _ 18,000 E,Sl’.‘l]_'?,ﬁﬂ]k—ﬂz
®="E ~ E —E
_ '3,5!]]!12]2 _
fn 1,500 (46,000] 0.017 rad
8 =0017 rad g? Ans.

Deflection at 8. Considering the portion 48 of the elastic curve m Fig. 6.6(c), and realizing that #4 & so small that
tan g = By, W write

Ag+ A
Q‘:%
from which
Ag =28, —Ag,

comnmuad
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Age = moment of the area of the M/El diagram between 4 and 8 about 8

-t (3)

53,333.33 k-
= —

Er El El

_ N666667(12)° :
'_——[I£M]($ﬁ,ﬂ!]] =243m.

Ag=243in. |

Ap b armu) 5333333 11666667 k&t

A

Ans,

Deflection at ¢, Fimally, considering the porton C0 of the elastic curve in Fig. 6 .6(c) and assuming &y to be small (so

that tan fp =), we write

Ac+ Acp
%=—75

Ap=108p— Aen

where
1 1 10000 k-ft*
dep =z [0 10)(F) | ===
Therefor,
9, 10,000 §5,000 k-t
ﬁf:m(m)‘ E  H
o gseo0(1)* .
Ae = mrooyaanm
Ar=1.7Tm. |

Determine the maximum deflection for the beam shown in Fig. 6.7(a) by the moment-area method.

Solution
M/EI Diagram. The M/EI diagrm is shown in Fig. 6.7(b).

Elstic Curve. The clastic corve for the beam i shown in Fig. 6.7[c).

o e




; 10 m

El = constiant
E=200 GPa
£ =T000108) mmd

{&)

M kN - m
(b} ] Diagram [ F]

L=15m |

al oL o

L
i

Tangent at Lr
{barizontal)

A e
b

'I‘anguﬁ at ;\\\

{c) Elastic Curve
AL 6.7

Slope at 4. The slope of the elastic curve is not known at any point on the beam, so we will use the tangent at support
A as the reference tangent and determine its slope, y, from the conditions that the deflections at the support pomts 4
and C are zero, From Fig. 6,7(c), we can see that

Aca

Gi=%

Toevalate the tangential deviation A, we apply the second moment-area theorem:
Ay =moment of the area of the M /EF dingram between A and C about C

Aca =g (0010 (4 5) + 3 a00s) ()|
200 Nt
Er

-r_--'..-- -..J_:'T'_-A!.r:..r!lu'ﬂ"Lryr:ﬁl—Lf.!v'l:u




Therefor, the slope at A is
0000/EF 133333 kN.m?

e ET

Location of the Maxmum Deflection. If the maximum deflection occurs at point 0, located at o distance 1., from the
keft support 4 [sec Fig. 6.7(c)), then the slope at D must be zzro; therefore,
1,333 33 kN . m?

Er
which indicates that in order for the slope at I to be 7em (1.2, the maximum deflection oocurs at ), the are of the A/ ET
diagram between 4 and 0 must be equal to 1,333.33/ Ef. We nse thiscondition to determine the location of point £

4 = area of the %djxp’nmhdmpmzlnniﬂ=l,33;33

Hm =ﬂ‘=

1 (403, 1,333.33
3 (F)"" =TEH

from which
Xm=El6m
Maximum Deflection. From Fig. 6.7(c), we can sce that
A
where
Aup=moment of the area of the M/El diagram between 4 and I about 4

1 {40)(8.16)
= (814 G)(a_m

_ 72H51 kN om?
E————

Therefor,
724451 kN - m?
Ao HECTE R

Substituting E = 200 GPa = 200(10%) kN/m? and [ = 700(10%) mm* = T00(10-*) m*, we obtain

7.244.51

Mgy = 51.7 mm | Ans.

P W R INE IR

Use the moment-aren method to determine the slope at point 4 and the deflection at point O of the beam shown in
Fig. 6.5(a),
Solution

MEl Dagram. The bending moment diagram is shown in Fig. 6.8k, and the M /£l diagram for o reference moment
of inertia f = 2,500 in * is shown in Fig. 6 &fc).
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40k 15k
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yfmﬁ-—-l-—m nA‘—mn—l—lm—-}'-—mn—' A b U
[ =

I . { . LS50

7=5000 04 I=2.500in.¢ 200 =
E =19,000 ksi 3]
W ) g Diagram ( %ﬂ with [ = 2,500 in.t)

(b} Bending Moment Disgram (k-ft)

Tangent at A

T (d) Elastic Curve

Ehlstic Curve, The elastio curve for the beam is shown in Fig. 6.8d). MNote that the elastic curve & discontinuous at the
mternal hinge C. Therefore, the moment-area theorems must be applied separately over the portions 4C and CF of the
curve on each side of the hinge,

Slope at 0. The tangent at support D is selected as the reference tangent. From Fig. 6.8{d), we can sce that the slope of
this tangent is given by the relationship
Agp
=

where, from the sscond moment-area theorem,

20,625 k&t

&m=%[1&![15]{1.5}+%(m][15]m}]= —

g _ 20,625 1375 k-7
SEISEDN BT

Deflection at €. From Fig 6.8(d}, we can sec that
Ac=10p+ Acn
n which

s () -




Ac= m(ﬁ)q_@ﬂ:mﬁlﬁiﬁ k-ft

El El Ef
Substtuting the numencl values of £ and I, we obtun
. | #lﬁ.ﬁ?tlif ;
Ar = =0 4E7 in.
© [29.000)(2.500)
A-=048T71m. |

Slope at 4. Considering the portion 4 C of the elastic curve, we can see from Fig. 6 £(d) that

Ac +Ara
U==N
where
1 {100 10,000 k£t
A =37 ) 200010 =225
Therefomr,
a 1 2041667 10,000  1,520.83 k-ft’
‘_i}'( 7 R - | )_ El
_ 152083012
e = a0 z300) — 08 rad

#q=0.003 rad ﬁ

f;'fc)}:uﬂﬂ"lﬂalr:k?;r—w'#i:u
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A i 3 C
| 301t Lo n—l
El = consaznt
E =29,000 ksi
=200 in 4
fal
780
El
_.f,.?-f

JAea 108,
i 57_-[ﬂc

Tangent at ¥

Ay

S {e) Elastic Curve

M EI Diagram. The bending moment diagram for this beam by cantilever parts with respect to the support point £ was
determined in Fig. 6.10. The ordinates of the bending moment diagram are divided by EI to obtain the M/El dingram

shown in Fig. 6.11(b).
Ehstic Curve. See Fig. 6.11(c).




Slope at B. Sclecting the tangent at B as the reference tangent, it can be seen from Fig. 6.11(c) that
Aus

g =——

30
By using the M /El diagram (Fig. 6.11(b)) and the propertics of geometric shapes given m Appendix A, we compute

Auw = g7 [3(780)30)20) - 7000)30)(3) 0

31,500 kAt?
=
Thercfore,
P 3,500 1,050 k-
®TWEN T EH
Deflection at C. From Fig. 6.11(c), we can see that
.ﬁ.c:‘ml—ﬂ.m
where
112 200 4,000 k-t
ﬁ"—i(ﬁ)““](ﬁ)— fa]
Therefor,

1L050% 4000 6,500 kY
A= 10(=5) - =

Substituting the numerical values of £ and f, we obtain

s} .
A = 000 o) 1

Ap=0194in. T Ans.
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