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Introduction

Classification of Beam Supports

Statically
Determinate
Beams

~ L "
(a) Simply supported beam

Statically
Indeterminate

Beams

- ‘I_"1

() Continuous beam

2 ey i To e

™ L
(b) Overhanging beam

- L ~

(e) Beam fixed at one end
and simply supported
at the other end

|
L |

A

(¢) Cantilever beam

(f) Fixed beam
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Shear and Bending Moment Diagrams

e Determination of maximum normal and
shearing stresses requires identification of
maximum internal shear force and bending
couple.

« Shear force and bending couple at a point are
determined by passing a section through the
beam and applying an equilibrium analysis on
the beam portions on either side of the

A C
) M section.
%

)  Sign conventions for shear forces Vand V"~

R, )
i and bending couples M and M’
2 -
) €
M’ ‘
Vv
(a) Internal forces
\ R (positive shear and positive bending moment)
B
s - 3 -
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Sample Problem 5.1

SRR e

2.5 m—!—l*— 3 m —>'+2 m

| ‘

80 mm

For the timber beam and loading
shown, draw the shear and bend-
moment diagrams and determine the
maximum normal stress due to
bending.

SOLUTION:

Treating the entire beam as a rigid
body, determine the reaction forces

Section the beam at points near
supports and load application points.
Apply equilibrium analyses on
resulting free-bodies to determine
internal shear forces and bending
couples

Identify the maximum shear and
bending-moment from plots of their
distributions.

Apply the elastic flexure formulas to
determine the corresponding
maximum normal stress.




Sample Problem 5.1

20 kN 40 kN

SOLUTION:

» Treating the entire beam as a rigid body, determine
the reaction forces
from > Fy =0=>»Mp: Rg =40kN Rp =14kN

20 kN

 Section the beam and apply equilibrium analyses

on resulting free-bodies
SFy=0 -20kN-V, =0 V; = —20kN

S>M;{=0 (20kN)Om)+M;=0 M;=0

20 kN

>Fy=0 —-20kN-V,=0 V, =-20kN
>M, =0 (20kN)2.5m)+M, =0 M, =-50kN-m

V3 =+26kN M3 =-50kN-m
V4 =+26kN M,y =+4+28kN-m
Vs =—14kN M4 =+28kN-m
Vg =—14kN Mg =0

20 kN

% 20 kN ‘
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Sample Problem 5.1

* Identify the maximum shear and bending-
moment from plots of their distributions.

n:--“:"'-""*‘ i LEG ' I BB i BT R e
Lu S FECE 14 kN Vi =26kN M, =|Mg|=50kN-m
46 kN
2.5 m><—3 m—>=2 m"
» Apply the elastic flexure formulas to
+26 kN ppm determine the corresponding

V | ~

maximum hormal stress.

o 14N _1pp2 1 2
S =¢bh” =2(0.080m)(0.250m)
2.0 m>1<— 3 m—>1<2 m->

—833.33x10%m?

M
.‘ +28 kN - m
Mg|_ 50x10°N-m
. Om = 63
S 833.33x10 °m
V_50 kN - m o =60.0x10° Pa

1 - ) ..: 5
" e e B | T el




Sample Problem 5.2

‘—' 8 ft a‘
3 kips/ft

e e
R B R R T

SOLUTION:
10 kips
3ft 2ftg] 3ft

—

» Replace the 10 kip load with an
equivalent force-couple system at D.
Find the reactions at B by considering

the beam as a rigid body.

» Section the beam at points near the
support and load application points.

The structure shown is constructed ofa  APPply equilibrium analyses on
W10x112 rolled-steel beam. (a) Draw resulting free-bodies to determine
the shear and bending-moment internal shear forces and bending
diagrams for the beam and the given couples.

loading. (b) determine normal stress in .
sections just to the right and left of * Apply the elastic flexure formulas to
ooint D. determine the maximum normal

stress to the left and right of point D.




Sample Problem 5.2
3 kips/ft 1' :‘70 kip . fti 318 kip .t SOLUTION

» Replace the 10 kip load with equivalent force-
couple system at . Find reactions at B.

» Section the beam and apply equilibrium
analyses on resulting free-bodies.

From Ato C:
2Fy=0 -3x-V =0 V = -3xkips

SM=0 Gx)Iix)+M =0 M =-1.5x>kip-fi

FromCto D:
>Fy=0 -24-V=0 V =-24kips

SMy=0 24(x-4)+M =0 M =(96-24x)kip-ft

From D to B :
V =-34kips M =(226-34x)kip-ft

B 4 , ‘ . | .
0 1 e 0T Jozvebama.ir




Sample Problem 5.2
3 kips/ft | 20kp-fi 318k ft ° Apply the elastic flexure formulas to
determine the maximum normal stress to

the left and right of point D.

From Appendix C for a W10x112 rolled

V | steel shape, $= 126 in3 about the X-Xaxis.
Sl 11f 16 £t To the left of D:
S 126in
— 34'kips To the right of D
M __IM[_1776kip-in o = 14.1Ksi
: m . 3
S 126in

— 96 kip - ft
— 168 kip - ft

— 318 kip - ft .
—gteaD " 11-.:-.-’?,_-,-' _.n.-':l,_;"."'".r'.:l_:ﬁ':"":—,'_:'.'-lr"u‘-'.r JOZVQ ba ma Al




Relations Among Load, Shear, and Bending Moment

« Relationship between load and shear:
>Fy=0: V-(V+AV)-wAx=0

w .---———T

AV = —WAX
dv

— = —W

dx

XD
Vp —Ve =— Jwdx
Xc

 Relationship between shear and bending
moment:
S>Mcr=0: (M+AM)-M -V Ax+wa%=o
2
AM =V Ax - w(Ax)

aM

—=0
dx

XD
Mp—Mc = [V dx

Xc
TS el Tt Jozvebama.ir




Sample Problem 5.3

SOLUTION:
20 kips 12 kips 1.5 kips/ft ) .
« Taking the entire beam as a free body,

determine the reactions at A and D.

& B J_._ . ftJ'm 4 " ftJ « Apply the relationship bet\yeen shear and
load to develop the shear diagram.

* Apply the relationship between bending
moment and shear to develop the bending
moment diagram.

Draw the shear and bending
moment diagrams for the
beam and loading shown.

= ..: " - i l_: -
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Sample Problem 5.3
4f~ 112 kips SOLUTION:

20 kips 12 kips

« Taking the entire beam as a free body, determine the

s e D a reactions at A and D.
<6 ft ==~ 8 ft—=t<—10 ft—=<—8 ft 2Mpa=0
20kips 12 kips L5 kips/ft 0 = D(24ft)—(20kips (6 ft)— (12 kips )(14 ft)— (12 kips (28 ft)
D = 26kips
: SF, =0
18 kips | 26 kips 0= Ay —20kips —12kips + 26 kips —12kips
20 kips |
o A, = 18Kkips
| * Apply the relationship between shear and load to
18 kips develop the shear diagram.
V (kips)
+18 d—V:—W dV =—-w dx
-+ 108) +10 b (+48) dx
19 - zero slope between concentrated loads
A (~140) | - linear variation over uniform load segment
—14

T e W D T .'-:-"J-'.- / -




Sample Problem 5.3

sillir  ilse L5 kips/t  Apply the relationship between bending
| ‘ ‘ ‘ moment and shear to develop the bending
— moment diagram.
‘ M
26 kips K -

Vv dM =V dx

18 kips

V (kips) . .
- bending moment at A and £'is zero

+18

L +12 y (+48) . o
- bending moment variation between A, B,

/[ L C and Dis linear
(—140)

- bending moment variation between D

i B 7o and E'1s quadratic
+92

- net change in bending moment is equal to
areas under shear distribution segments

B WC - total of all bending moment changes across
| the beam should be zero

b | = p— ..: &
Fed - 15.I--.-":,_-_:_!.a-.|.".'l,'_-l"."'".-'.- I B .'-:-*u-'.-




Sample Problem 5.5

SOLUTION:

« Taking the entire beam as a free body,
determine the reactions at C.

* Apply the relationship between shear
and load to develop the shear diagram.

« Apply the relationship between
bending moment and shear to develop
the bending moment diagram.

Draw the shear and bending
moment diagrams for the beam and
loading shown.

b | = p— ..: &
Fed - 161--.-":,_-__:_!.’.;':1,'_-"."'".-'.- I B .I':'"u-.-




Sample Problem 5.5

[= 5we’] [~ SwealL — a)]

SOLUTION:

« Taking the entire beam as a free body,
determine the reactions at C.

Y Fy =0=-lwpa+Rc Re =1wpa

M :O:%Woa(L—§j+ Me Mg :—%Woa(L—g

Results from integration of the load and shear
distributions should be equivalent.

* Apply the relationship between shear and load
to develop the shear diagram.

a

a ¥ «2

Ve =Va=—[Wy| 1—— [dX =— Wy| X——
o]

Vg = -1 wya =—(area under load curve)

- No change in shear between Band C.
- Compatible with free body analysis




Sample Problem 5.5

l.- .-:I.S _

S . 1
2 Wod — FWya

| = - 2
18 .|= I| - ‘l'...-|.lll ..Ef"l -"-I'r" ‘-
'-‘-"'. |I.I.|_.-"-'h'l'-ll.f & Cad f—'.__ : =

y
= %woa(SL -

a)

» Apply the relationship between bending moment
and shear to develop the bending moment
diagram.

2 2 3\]?
oo onfe- ol )]

M B = —%W()a2

MB —MC I(——Woa)dx_—EWOa(L a)
a

Mg = —%woa(3L—a)=a—;"0(L—gj

Results at Care compatible with free-body
analysis

Jozvebama.ir




Design of Prismatic Beams for Bending

» The largest normal stress 1s found at the surface where the
maximum bending moment occurs.

Mlipax© _ M|
_ max ~ _ max

om=T T g

A safe design requires that the maximum normal stress be
less than the allowable stress for the material used. This
criteria leads to the determination of the minimum
acceptable section modulus.

Om = Oy

_ _‘ ‘max
Smln _
Oall

« Among beam section choices which have an acceptable
section modulus, the one with the smallest weight per unit
length or cross sectional area will be the least expensive
and the best choice.

& b | = p— ..l' &
> - 19.I-.-‘",_-_:_!.a-.|.":','_-l"."".-'.- I B .'-:-*u-'.




Sample Problem 5.8

_ 50 kN
20 kN ‘ SOLUTION:
B YC  p

(T e

» Considering the entire beam as a free-
body, determine the reactions at A and
D.

B T T i

Im 1m

» Develop the shear diagram for the
beam and load distribution. From the
diagram, determine the maximum
bending moment.

A simply supported steel beam is to
carry the distributed and
concentrated loads shown. Knowing
that the allowable normal stress for

the grade of steel to be used is 160 e Determine the minimum acceptable

MPa, select the wide-flange shape beam section modulus. Choose the

that should be used. best standard section which meets this
criteria.

=

A5 - 20 %5

- § - ..:
Y e ¥ . R | )
' I'.'_.:.".h '.‘l'.__llr."‘".'l.- |-F.-'.__l" .-:-""u-.-




Sample Problem 5.8

e » Considering the entire beam as a free-body,

' 0N determine the reactions at A and D.
ERRRIRARETE P > M 4 =0 = D(5m)- (60kN)1.5m)~ (S0kN)4m)
T'i e ... D = 58.0kN
‘.-\,,'vl.s, L5 memfe—t AD > Fy =0=A, +580kN-60kN -50kN
Ay =52.0kN
v « Develop the shear diagram and determine the
52 kN maximum bending moment.
Va = A, =52.0kN
) (67.6) & = e o Vg —Va = —(area under load curve) = —-60kN
N ' Vg = -8kN
T x=26m -8 kN ) )
* Maximum bending moment occurs at
V=0or x=2.6 m.
58 kN M| =(area under shear curve, AtoE)
max
=67.6kN
. 5- 21-.—--"'.'._;;1:-'-'5'..!"-“'-":-"‘:'1:-";"-"."'-:'* JZVEec




Sample Problem 5.8

e Determine the minimum acceptable beam

section modulus.
M| . 67.6kN-m

Smin - -

Ga” 16OMPa
= 422.5%10 % m3 = 422.5%x10° mm°>

* Choose the best standard section which meets
this criteria.

Shape | S,mm’ W360x32.9
W410x38.8 | 637
W360x32.9 | 474
W310x38.7 | 549
dW250x44.8 | 535
7 W200x46.1 | 448

& ..: 1 - e B
FAD - ZZ_I,_-FI"_.;;:;-...-E:‘_,-'-.H.-L I:I.-i.'r"'.--,'___-l' _'-:.-i'.:-.-




et N A INEAR B

Draw the shear and bending moment dingrams for the beam shown in Fig. 5.5(a).

£ Ok 2 ek - :
. 1 EHEAN e o,
Wk e o | i
~ 2k S 15 ! E
Dty el (7T LD
Bl L b gy
I._ | | __I X | | B
lﬂfl—"—]ﬂﬁ T 100 ft 1 "Jﬂ 1 I
{nl b
460)
46 320
20
~ &
A B C D E L
—T4 A I C \ﬂ/"-ﬂ'
5 I-il'ﬁ.Tiﬂ——I s
i) Shear Dingram (k) id) Bending Moment Diagram {k-ft)
G 55
Solution

Reactions. Sce Fig. 5.5(b).
+—=EFhE=0 4=0
+{ Y Mp=0
—Ay(30) 4 60{20) + 180 4+ 2(N)([0) =0
A, =46k

e e e e ol

,._J;m,:.,uw;rﬁh-_fym Jozvebama.ir




+TEE=0
4 — 60— 2{20) + 0, =1
D =5ki
Shear Diagram. To determine the equation for shear in segment 4 8 of the beam, we pass a section oo ot a distance x
from support 4, as shown in Fig. 5.5(b). Considering the free body to the left of this section, we obtain
S=4k fobsx=10H#
As this equation indicates, the shear is constant at 46 k from an infinitesimal distance to the right of pont 4 to an
mfintesimal distance to the keft of point 8. At pont 4, the shear increases abruptly from O to 46 k& so a vertical line
& dmwn from 0 to 46 on the shear diagram (Fig. 5.5(c)) at 4 to indicate this change. This & followed by 2 horzontal

line from A to B to indicate that the shear remains constant in this scgment.
Mext, by using section bb (Fig. 5.5(b]), we determine the equation for shear in segment BC as

S=46—-6l=—14k forl0ft <x=2f

The abrupt change in shear from 46 k at an infinitesimal distance to the left of 8 to —14 k at an infintesimal distance to
the nght of & is shown on the shear diagram [Fig. 5 5(c)) by a vertical line from +46 to —14. A horontal line at —14 is
then drawn from £ to O to indicate that the shear remains constant at this value throughout this seement.

To determine the equations for shear in the rght half of the beam, it is convenient to use another coordmate, 1,
directed to the left from the end £ of the beam, as shown in Fig. 5.5(b). The equations for shear in segments £0 and
D are obtained by considering the free bodics to the right of sections dd and cc, respectively. Thus,

S§=2x forl=x<I10ft

and
S=M—-5 forl0ft<x; =2 ft
These equations indicate that the shear increases linearly from zero at £ to +20 k at an infinitesimal distance to the

right of [ it then drops abmptly to —3 k at an mfinitesimal distance to the keft of ©; and from there it increases
bnearly to —14 k at C. This mformation 1s plotted on the shear diagram, as shown in Fig. 5.5(c). Ang.

Bonding Moment Disgram. Using the same sections and coordinates employed previously for computing shear, we
determine the following equations for bending moment in the four segments of the beam. For segment A 8:

M=46x ford =< x=10ft
For segment BC:
M =46 — 60{x— 10) = —14x+ 600 for 10 ft <x < 20 ft
For scgment ED;

.u=_1r.("7')=_xf for 0 < x; <10 Rt

For segment DC:
M=—x+5x —10)=—x; +3x -5 forl0ft<x, <20t

The firt two equations, for the keft half of the beam, ndicate that the bending moment increass lincady from 0 at A to
460 k-ft at 8; it then decreases linearly to 330 k-ft at C, as shown on the bending moment diagram in Fig. 5.5(d). The
last two equations for the right half of the beam am quadratic in x;. The values of M computed from these equations are
plotted on the bending moment diagram shown in Fig. 5.5(d). It can be scen that M deoreases from 0 at £ to —100 k-fi
at [0, and it then increases to +140 k-t at an infinitesimal distance to the right of C. Note that at C, the bending moment
drops abruptly by an amount 320 — 140 = 180 k-ft, which is equal to the magnitude of the moment of the counter-
dockwise external couple acting at this point.

AT Jozvebama.ir




A point at which the bending moment is zero & termed the point of Rfieciion. To determine the location of the
point of inflaction F (Fig. 5.5(d)), we set M = 0 in the equation for bending moment in segment DC to obtain
M =—x] + 50 —540=0

from which x; = 13.25 ft; that &, point F is located at a distance of 13.25 ft from end E, or 40 — 1325 = 26.75 ft from
support 4 of the beam, as shown in Fig. 5.5(d). Ans.

-._-e.:".',;{!.-:..r!llu'ﬂr'lﬂ.-T.-g‘r-Lr'l:flfu Jozvebama.ir




Draw the shear and bending moment diagrams for the beam shown in Fig. 5.6(a).

e T
|

e e
] 27 kNfm i
b A —T'-T T

?

Il 27T kNim.
|
I T I
] h
kM
I

anll;

€, = 60.75 kN

Im ! fim IB’ e
{2}

=

(b}

! 60,75
i) Shear [.'liugramI{EN}

T3

|

D

‘ —-13.5 \
.36 m

id) Bending Moment Diggram (KN - m)
ARG 56 G

vt e

-._-e.:".',;{!.-:..r!llu'ﬂr'lﬂ.-T.-g‘r-Lr'l:flfu Jozvebama.ir




Reactions. See Fig. 5.6(b).
+(EM =0

G) (9)(27) G) —B,(6)=0 B, =6075kNT
+ TE-F)- =1
—G)(‘?]EZTHm.?s +C=0 Cy=6075kNT

Shear Diagram. To determine the equations for shear in segments 4 8 and BC of the beam, we pass soctions ae and bb

the beam, as shown in Fig. 5.6(b). Considering the free bodies to the left of these sections and realizing that the
load intensity, w(x], at a point at a distance x from end 4 & wix) = (&)x = 3x kN/m, we obtain the following equa-
tions for shear in segments 4 8 and BC, respectively:

3=_G)[x](3x]=—$ for0 = x<3m

5‘=—(3%Z)+6l].?5 forim< x<9%m

The values of § computed from these equations are plotted to obtain the shear diagram shown m Fig. 5.6(c). The point
1 at which the shear is zero & obtamed from the equation

s= _(% +60.75=0

from which x = 6.36 m. Ans.

Bending Moment Diagram. LUsing the same sections employed previously for computing shear, we determine the follow-
ng equations for bending moment in segments 48 and BC, mspectively:

M:—G)(x](lr](%) =_§ for0<x<3m

H=—(§)+m.?$[x—3] forim=x=9%m
The values of M computed from these equations are plotted to obtain the bending moment dia gram shown in Fig. 5.6(d).
Tolocate the point at which the bending moment s maximum, we differentiate the equation for M in segment BC with
respect to x and set the derivative dM / dr equal to zero; that is

M [ 3
— (_%z) +60.75=0

from which x = 6.36 m. This ndicates that the maximum bending moment occurs at the same point at which the shear
& zem. Also, a comparison of the expressions for dM /dv and & in segment BC indicates that the two equations are
identical; that is, the slope of the bending moment diagram at a pont is equal to the shear at that point. (This rela-
tionship, which is generally valid, is disussed in detail in a subsequent section. )

Fnally, the magnitude of the maximun moment is determined by substituting x = 6.36 m into the equation for M
m segment B

3
M..._,:_[-m'zﬂ] +60.75(6.36 — 3) =755 kN -m Ans.

TR gl it Jozvebama.ir




Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.9(a).

Solution
Reactions, |See Fig. 5.9(b).)
+=YTF=0 4.=0

f}fﬂﬁaﬂﬂflﬂﬁﬁjiﬂfﬂ; Jozvebama.ir




=

l—10t——10—+— 10—

[a}

12k Wk
e
B c |
A,=18k D=24k
-
(h}
e slope
LB
£ 180§ &
i C D
A B
(2400
=24
{c) Shear Diagram (k)
240
Megative slo
Pasitive shope B i

{d) Bending Moment Dagram (k—ft}

litative Deflecied Sh
ks fe) Qualitative ape

By proportions,

4,:11(%)+m(;—:)=1u A, =18k 1

+1EH=0
18— 12-304D,=0
D, =24k D, =24k

o auad
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Shear Diagram.,

Paoint 4. Since a positive (upward) concentrated force of 18-k magnitude acts at point 4, the shear diagram increases
abmptly from 0 to 4+1% k at this point.
Point B. The shear just to the left of point B is given by

&gy =54 g+ area under the load diagram between just to the right of 4 to
Just to the left of B

m which the subscripts ©*, L™ and ., B are usad to denote “just to the loft™ and “ust to the right,"” respectively. As no
load 15 applied to this sepment of the beam,

Ser=18+0=18k
Because a negative (downward) concentrated load of 1 2-k magnitude acts at point £, the shear just to the right of B is

Point (-
Sr ¢ = 8g p+arca under the load disgram between just to the nght of B to
qust to the left of C
Sce=6+0=6k
Sca=06-3=-Mk
Point 3. Spe=—-M+0=-24k

ng=—14+.z-\1-=ﬁ Checks

The numencal values of shear computed at pomts 4, 8, C, and [ are used to construct the shear diagram as shown

n Fig. 5.9(c). The shape of the dingram between these ordinates has been established by applying Eq. (5.3), which states
that the slope of the shear dimpram at a point is equal to the load intersity at that pomt. Because no load s applisd to
the beam between these points, the dope of the shear diagram i1s zero between these points, and the shear diagram con-
sists of a serics of horizontal lines, as shown in the figure. Mote that the shear diagmm closes (i.e, returns to zero] just to
the right of the right end 2 of the beam, indicating that the analysis has been carried out correctly. Ans.

To facilitate the construction of the bendmg moment diagram, the aras of the varions sepments of the shear dia-
gram have been computed and are shown in parentheses on the shear diagram (Fig. 5.9(c)).
Bodimg M oment D gram.,

Point 4. Because no couple 1s applicd at end 4, My =0,

Point 5. Mg = M, +arca under the shear diagram
between 4 and B

Mg =10+ 180 = 180 k-t
Point . Me = 180+ 60 = 240 k-fi
Point . Mp=20-240=0 Checks

The numerical values of bending moment computed at points 4, 8, C, and [ are used to construct the bending mo-
ment diagram shown i Fig. 5.9(d). The shape of the diagram between these ordinates has been established by applying
Eq. [5.8), which states that the slope of the bending moment dia gram at a point 1sequal to the shear at that pomt. As the
shear between these points 15 constant, the slope of the bending moment diagram must be constant between these points.

e s

TR gl it Jozvebama.ir




Therefom, the ordinates of the bending moment diagram are connected by straight, doping lines. In segment A8, the
shear is + 18 k. Themfore, the slope of the bending moment diagram in this segment is 18:1, and it is poative—that is,
upward to the right (/). In segment BC, the shear drops to +6 k; therefore, the slope of the bending moment diagram re-
duces to 6:1 but remams positive. In segment CI, the shear becomes —24; consequently, the slope of the bending moment
diagram becomes negative—that is, downward to the right (\), as shown in Fig. 5.9(d). Note that the maximum bending

moment oocurs at point O, where the shear changes from positive to the left to negative to the night. Ans.
Oualitative Deflected Shape. A quahitative deflected shape of the beam is shown in Fig. 5.9(¢). As the bending moment
i positive over its entire length, the beam bends concave upward, as shown, Ans.
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Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.10[a).

Solution
Reactions, (Sec Fig. 5.10(b).)
+ 3K =1 A, =10
+1EL=D
A, —T0=0
Ay =T0 kN A, =TOkNT
+O M, =0

M — T0(6) — 200 =0
M,=60kN.-m M,=620kN-m?}

Shear Diagram.
Puoint A Sa,g=T0 kN
Point 8. Sge=T+0=T0kN
Sag=T0-T=10
Point Sce=0+0=0
S p=0+0=0 Checks

The numencal values of shear evaluated at points 4, 8, and C are used to construct the shear diagram as shown in
Fig. 5.10(c). Because no load is applied to the beam between these points, the slope of the shear diagram is zero between
these points. To facilitate the construction of the bending moment diagram, the anca of the scgment 4 8 of the shear
diagram has been computed and & shown in parentheses on the shear diagram (Fig. 5.10(c]). Ans,
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T0 kN

‘ 200 kN - m
|r 6 m: | 4 m !
(a)
My =620kN-m ?nlm
¥ (]—: i CD
200 kN - m
A,=TOKN
i (b}
Zero slope
70
(4200

{d} Bending moment
diagram (kN - m)
| C
la
W ko {e) Qualiative Deflecied Shape
Bending Moment [V gram,

Point 4. Since a negative [counterclockwise) couple of 620 kN - m moment acts at point 4, the bending moment dia-
gram decreases abruptly from O to —6230 kN - mat this pomt; that is,

My g=—60kN.m
Point . Mg ——6204420= 200 kN -m

o mraid
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Point € Me, = =200 +0=—200 kN.m
Me g =—200 4200 =0 Checks

The bending moment diagram is shown in Fig. 5.10(d). The shape of this diagram between the ordnates just com-
puted is based on the condition that the slope of the bending moment diagram at a point is equal to shear at that point. As
the shear in the segments 48 and BC is constant, the slope of the bending moment diagmm must be constant i these
segments. Therefore, the ordinates of the bending moment diagmm are connected by straight lmes. In segment A8, the
shear is positive, and so is the slope of the bending moment diagram in this segment. In segment B, the shear becomes

zero; consequently, the slope of the bending moment diagram becomes zero, as shown in Fig. 5.10(d). Ans.
Oualitative Deflected Shape. A quabtative deflected shape of the beam s shown in Fig. 5.10(¢). As the bending moment
is megative over its entire length, the beam bends concave downward, as shown, Ans.

AT Jozvebama.ir




Draw the shear and bending moment diangrams and the qualitative deflected shape for the beam shown in Fig. 5.11(a).

Solution
Reactions. (See Fig. 5.11(b).)
+ =Y =0
A, =W =0
A =3 kN Ay = 3 kN —
+( 3 Mp=0

—A4,(27) + 10{15}(19.5) — 162 + 40(6) = 0
A, =11122EkN 4, =112 kN

+1 LK =0

111,22 — 10{15) —40 + D, =0
D, =TE78kN D, =7878kNT

Shear Diggrmm.
Point 4. Saz=11122kN
Puoint 8. Sp=11122— 10{15) = —38.78 kN
Point 2 Scp=-38T78 +0=—-3878 kN
Sep=—38T78— 40 =—TE.7E kN
Paint . Spp=-—TETE+0=—TET7R kN
Spe=—"TETRE+TE8TE=10 Checks

The shear diagram is shown m Fig. 5.11(c). In scgment 4 8, the beam & subjected to a downward (negative) umi-
formly distributed load of 10 kN/m. Because the load intensity 1s constant and negative in segment 48, the shear dia-
gram in this segment & a strught line with negative slope. Mo distnbuted load is applied to the beam in segments BC and
C'D, so the shear dingram m these segments consists of horzontal lines, mdicating zero dopes. Ans.

ovan el
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4,= 11122 kN
{b]
111.22 kN
(—=75.23)
L (61839 E /g c o
S _(~232.68)
|"_X= ".Izl’l’l_'l —3R.TR {-4?:.68]
{c) Shear Diagram (kM) ~T8-78
Negative slope
Zerv slope /‘ms.ns
Positive slope A
e 47247

Positive slope ._

A E B (2

{d)y Bending Moment Diagram (kN - m)

S fe} Qualitative Detlected Shape

The point of zero shear, £, can be located by using the similar tnangles formmg the shear diagram between 4 and
B. Thus,

X 15
1M1.22  (111.22+ 38.78)

x=1112m

o o el

o
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To facilitate the construction of the bending moment diagram, the aras of the various segments of the shear dia-
gram have been computed; they are shown in parentheses on the shear diagram (Fig. 5.11(c]).

Bending Moment Diagram.
Point 4. My=0
Point [ Me=04+61838 =61838 kN-m
Point B. Mg, =61838 — 75.23 = 54315 kN .m
Mgg=5315+162=T0515 kN -m
Point - Mr=T0515-23268 =472.47 kN - m
Point 3. Mp=4T7247 — 47268 = -021=0 Checks

The bending moment diagram & shown in Fig. 5.11(d). The shape of this diagram between the ordinates just com-
puted has been based on the condition that the sope of the bendmg moment diagram at any point 15 cqual to the shear at
that point. Just to the night of A4, the shear 15 posiove, and so 15 the slope of the bending moment digram at this
point. As we move to the right from A, the shear decreases linearly (but remains positive), until it becomes zero at E.
Therefom, the slope of the bending moment diagram gradually decreases, or becomes less steep (but remains positive],
as we move to the right from A, until it becomes zero at £, Mote that the shear diagram in segment AE is lingar, but the
bending moment diagram in this scgment 1s parabolic, or a sccond-degree curve, becanse the bending moment diagram
s obtained by integrating the shear diagram (Eq. 5.11). Therefore, the bending moment curve will always be one degree
higher than the corresponding shear curve,

We can see from Fig. 5.11(d) that the bending moment becomes locally maximum at point £, where the shear
changes from positive to the left to negative to the night. As we move to the nght from E, the shear becomes negative,
and 1t decreases hincarly between E and B, Accordingly, the slope of the bending moment diagram becomes negatve to
the right of E, and it decreases contmuously (becomes more steep dowmward to the right) between E and ust to the left
of B. A positive (clockwise) couple acts at 8, so the bending moment increases abruptly at this point by an amount
equal to the magnitude of the moment of the couple. The largest value (global maximum) of the bending moment
over the entire length of the beam occurs at just to the nght of 8. (Mote that no abrupt change, or discontinuity, oocurs
m the shear diagram at this point.) Finally, as the shear in segments 8C and CI0 is constant and negative, the bending
moment diagmm in these segments consists of straight lines with negative slopes. Ans.

Qualitative Deflected Shape. Scc Fig. 5.11(e). Ans.
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Draw the shear and bending moment dingrams and the qualitative deflected shape for the beam shown in Fig. 5.12(a).

Solution
Reactions. (Sec Fig, 5.12(b).)

+—=3E=0 B, =0
+LEM-=0
2(3)(12)(24) - B,(20) +3(20)(10) — 2(3)(6)(2) =0
B, =7k B, —=%7k{
+TEE=0
~2(3)(12) +50.7- 3(20) — 2(3)(6) + G, =0
G =363k C,=3%3kT
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Sa=0
S =n—%[3}uz}=_m k

Spa=—18+507=327k
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Puint . Spp=327-3{20) =173k
.5'{:1] =273 +3ﬁ.3 =9k

Point D. Sp=9-3(3)(6) =0 Checks

The shear diagram s shown in Fig. 5.12(c). The shape of the diagram between the ordnates just computed = ob-
tained by applying the condition that the slope of the shear diagram at any point is equal to the load intensity at that
point. For example, as the load intensity at 4 1s zero, so & the slope of the shear diagram at 4. Between 4 and B, the
Ipad intensity & negative and it decreases linearly from zero at 4 to —3 k/ft at B Thos, the slope of the shear dia gram is
negative in this segment, and 1t decreases (becomes more steep) contmuously from A to just to the left of 8. The rest of
the shear diagram is constructed by vsing similar reasoning. Ans.

The pomt of zero shear, E, 15 located by using the smmilar tnangles forming the shear diagram between & and C.

To facilitate the construction of the bending moment diagram, the amas of the various segments of the shear dia-
gram hawve been computed and are shown in parentheses on the shear diagram [Fig. 5.12(c]). It should be noted that the
areas of the parabolic spandrel, 48 and CD, can be obtained by uang the formula for the area of this shape given in

Appendix A

Bending Moment Dia gram.

Puoint 4. My=10

Point 5. Mg =0=72= =72kt

Point E. Mg =—T2 4+ 17822 = 106.22 kft

Point . Mr=10622—- 12422 = —18 k-t

Point . Mp=—18+18=10 Checks

The shape of the bending moment diagram between these ordinates is obtained by vsing the condition that the slope
of the bending moment diagram at any point 15 equal to the shear at that point. The bending moment diagram thus
constructed is shown in Fig. 5.12(d).

It can be scen from this figure that the maximum negative bending moment occurs at point B, whereas the
maximum positive bending moment, which has the lar gest absolute value over the entire length of the beam, occurs
at point E, Ans.

To locate the ponts of inflection, F and &, we set equal to zero the equation for bending moment in segment 8C,
in terms of the distance x from the left support point 8 (Fiz. 5.12(k)):

M= _G) (3)(12)(4 +x) + 50.7x — 3{x) G) =0

157 4+ Tx-T2=0
from which x = 2.49 ft and x = 19.31 ft from B.
Oualitative Deflected Shape. A qualitative deflected shape of the beam i shown in Fig. 5.1 2(e). The bending moment is

positive in segment F7, so the beam = bent concave upward in this region. Conversely, since the bending moment 1s
negative insegments 4F and 0, the beam is bent concave dowmward in these segments. Ans.
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A, =30 EN C, =250 kN
e fe} Qualitative Deflected Shape
AG.513
Solution
Reactions. (See Fig 5.13(b))
+C M0
—20{10)(5) + C,(10) — 100{15) =0
€, = 250 kN G =290 kNT
+TE =10
Ay — 20010} + 250 — 100 =0
=50 kN A, =0kNT
+0 M, =0

M, — 20(10)(15) +250(20) — 100(25) = 0
M=%0KkN.-m M,=300kN.m)
compmurd
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Point A. Son=50kN
Point B. Sp=50+0=350kN
Point (. Se,e = 50— 20(10) = —150 kN
Sem=—150+250 = 100 kN
Point . Sp.o= 100+ 0 =100 kN
Spg=100-100 =0 Checks
The shear diagram is shown in Fig. 5.13[c). Ans.
Bending Moment [Viagram.
Point A. Myg=-%00kN-m
Point B. Mg=—500+ 500 =0
Point E. Mg =04+625=625kN-m
Point C. Me=625—5625=—500 kN-m
Point D. Mp=—500+500=0 Checks

The bending moment diagram is shownin Fig. 5.13(d). The point of inflection £ can be located by setting equal to zero
the equation for bending moment in segment 8C, in terms of the distance x; from the right support point O [ Fig. 5.13(b]):

M = —100(5 + x;) + 250x, — 20(x,) (%) =0

— 102 + 150 — 500 =0

from which x; = 5m and x; = 1) m from . Motz that the solution x5 = 10'm represents the location of the internal
hinge at &, at which the bending moment is zero, Thus, the point of inflection F islocated at a distance of 5 m to the left
of C, as shown in Fig. 5.13(d). Ans,

Oualitative Deflected Shape. A qualitative deflected shape of the beam is shown in Fig. 5.13(2). Mote that at the fined sup-
port A, both the deflection and theslope of the beam arezero, wherzas at the roller support C, only the deflactionis zero, but
theslopeisnot. Theinternal hinge B does not provide any rotational restraint, so the slope at B can be discontinuous. Ans.

i |
el
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Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.14(a).

Solution
Reacions. (S Fig 5.14(b).)

D,(24) ~2024)(12) =0
D,=2Mk D, =24kt
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+L M, =0

24(60) + B,(30) — 2(60)(30) = 0
B,=T2k B =Tkt

+TEh=0

Ay —2(60)4+ T2+ 24 =10
A, =Mk A4, =Mkt

Shear Dagram.
Point A. Sea=24k
Point 8. Sgo=24_2W)=-3%k

Spp=-364+T2=36k
Point D, Spr=36-200)=-Mk

Spe=-H 4+ =10 Checks
The shear diagram is shown in Fig. 5.14(c). Nk
Bending Moment [iagram.
Point A My=0
Point £ Me=0+14 = 144 kAt
Point B. Mg =144 324 = —180 k-t
Point F. Mp=—180+324 = 144 k-t
Puoint . Mp=1#4—14 =0 Checks
The bending moment diagram is shown in Fig. 5.14(d). Ans.
Qualitative Deflected Shape. See Fig. 5.14{c). Ans.
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Drraw the shear and bending moment dia grams and the qualitative deflected shape for the statically indetermmnate beam
shown in Fig. 5.15, The support reactions, determined by using the procedures for the analysis of statically indeterminate
beams | presented in Part Three of this text), are given m Fig. 5.15(a).

Solution
Regardless of whether a beam is statically determinate or indeterminate, once the support reactions have been de-
termined, the procedure for constructing the shear and bending moment dingrams remains the same. The shear and
bending moment diagrams for the given statically indeterminate beam are shown in Fig. 5.15(b) and (c), respectively,
and a quabitative deflected shape of the beam is shown in Fig. 5.15(d).
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Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in
Fig. 5.23(a).

Solution
Static Detorminacy. m=13, j=4,r=13 ande, = 0. Because 3m 4+ r = 3j + &, and the frame is geometnically stable, it
s statically determinate.

Reactions, Considering the equilibrium of the entire frame (Fig. 523(b)), we observe that in order to mtsty 3 Fy =10,
the reachon component 4 y must act to the left with a magnitude of 18 k to balance the horwontal load of 18 k to the

right. Thus,
Ar=-18k Ar=18k~—

We compute the remaming two reactions by applying the two equilibrium equations as follows:

+R M, =0 1820} - 2(0)(15)+ Dy(H) =0 Dy=42kT

+ 1 ¥ Fr=0 Ay —2I)+42=0 Ady=18k]

Member End Forces. The free-body diagrams of all the members and joints of the frame are shown in Fig. 523(c). We
can begin the computation of internal forces either at joint 4 or at joint 3, both of which have only three unknowns.

Joint 4. Beginning with joint 4, we can see from its free-body diagram that n order to satisfy 37 Fy = 0, 4® must act
to the night with a magnitude of 18 k to balance the horzontal reaction of 18 k to the left. Thus,

P —
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Similarly, by applying 3 Fy =0, we obtain
A — 18 k

Member 4B, With the magnitudes of 4 and 44* now known, member 4 8 has three unknowns, 82 BJ® and M8
which cam b detcrmincd by applying 3 Fr —0, 3" Fr = 0, and 3 M. — 0, Thus,

B¥ =18k B =18k M =360 k-t
Joint B, Proceeding next to jomt 8 and considering its equilibrium, we obtain
B =0 BE =18k M =360 kft
Member BC. Mext, considering the equilibrium of member BC, we write
+ =3 Fr=10 CiE=0
+ T Fr=0 -2+ =0 Cff =42k
+EEMg=0 =360 —2(30)(15) +42(3) + ME“ =0 MEE =0
Joint C. Applying the three equilibrium equations, we obain
Cf=0 CfP=-42k ME® =0
Member CD. Applying 3 Fr =0and 3 Fr = 0 in order, we obtain
bP=0 Df=42k

Since all unknown forces and moments have been determined, we check our computations by uang the third equili-
brium equations for member O,

+ - Mp=10 Checks

Joint D. [Checking computations)
+ =+ Fe=0 Checks
+TFr=0 42-42=0 Checks

Shear Diagrams. The xv coordinate systems slected for the three members of the frame are shown n Fig. 5.23(d),
and the shear diagmms for the members constructed by using the procedure described in Section 5.4 are depicted in
Fig. 5.23(e). Ans.

Bending Moment Disgrams. The bending moment diagrams for the three members of the frame areshown in Fig. 5.23(f).

Axial Force Diagrams. From the free-body diagram of member 48 in Fig. 5.23(d), we observe that the axial force
throughout the length of this member is compressive, with a constant magnitude of 18 k. Therefore, the axial force
diagram for this member is a straight line parallel to the x axis at a value of —18 k, as shown in Fig. 5.23(g). Similarly,
it can be seen from Fig. 523(d) that the awal fomes m members BC and CI are also constant, with magnitudes of
Oand —42 k, respectively. The axial force diagrams thus constrocted for these members are shown in Fig. 523(g).  Ans.

Qualitative Deflected Shape. From the bending moment diagrams of the members of the frame (Fig. 5.23(f)), we ob-
serve that the members 4 8 and 8C bend concave to the left and concave upward, respectively. As no bending moment
develops in member I, it does not bend but remains sraight. A qualitative deflected shape of the frame obtained by
connecting the deflected shapes of the three members at the joints is shown in Fig. 5 23(h). As this figure indicates, the
deflection of the frame at support A is zero. Due to the horizontal load at B, joint B deflects to the right to B’ Since the
axial deformations of members are neglected and bending deformations are assumed to be small, joint £ deflects only in
the horizontal dirction, and joint C deflects by the same amount as joint B; that 15, B8 = OO, Note that the curva-
tures of the members are consistent with their bending moment diagrams and that the original ®F angles between
members at the ngid joints & and ¢ have been maintained. Ans.
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Draw the shear, bending moment, and amal foree diagrams and the gqualitatve deflocted shape for the frame shown in

Fig. 5.24(a).
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Solution
Stafic Detorminacy. m =2, j=3, r=3, and & = (. Because 3m +r = 3+ & and the frame is geometrically stable, it
& statically determinate,
Reactions. [Soe Fig. 5.24(b).)
+—=3 FE =0
—_ k-I-1$=ﬂ Ak=ﬁi4—
+1LR=0
A, —1.6(15) =0 A, =Mk
+iE M, =0

M, — 25(10) — 1L6(15)(7.5) =0 M, =430 kft
it parad
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Member End Forces. (Sce Fig. 5.24(c) )
Joint 4. By applying the equilibrium equations ¥~ Fy =0, T Fy =0, and ¥ M, = 0, we obtain
AP = 25k A =24k MM 40 kA
Member AB. Next, considering the equilibrium of member 4 B, we write
+ T Fe =0 ~15+25+ B =0 B¥=0
+ 1T Fr =0 24+ B¥E_0  B¥_ 2k
+ (T Mg=0  40-25(10) + MAE=0  MP*=_180 kHt
Joint B. Applying the three equations of equilibrium, we obtain
B0 B®_Mk M 180 kf
Member BC. (Checking computations.)

+—= T Fr=10 Checks
+ 1T Fr=0 24 —16(15) =0 Checks
4+ Mg=0 180 —16(15)(75) =0 Checks
The member end forces are shown in Fig. 5.24(d).
Shear Diagrams. Sce Fig. 5.24(c). Ans.
Bending Moment Diagrams, Sece Fig, 5.24(f). Ans.
Axial Force Diagrams. Sce Fig, 5.24(g). Ans.
Qualitative Deflected Shape. Sce Fig. 5.24(h). Ans.
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A gable fmme 15 subjected to a snow loading, as shown in Fig. 525(a). Draw the shear, bending moment, and axial
foree diagrams and the qualitative deflected shape for the frame.
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Solution
Static Determinacy. m=4, j=35 r=4, and &, = 1. Because 3m +r = 3+ & and the frame is geometrically stable, it
& statically determinate.
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Reactions. (See Fig. 5.25(b).)
+LY  Me=0
—Ay(8) +12(8){4) =0 Ay =4BENT
+1 L Fr=0
48 —12(8) + Er =0 Ey =48 kN T
+(EME =0
Ax(8) — 48(4) +12(4)(2) =0 Ar =12 kN
+ =3 Fe=0
124+ Ex =0
Ey=—12kN E,=12kN—
Member End Forces. (See Fig. 5.25(¢))
Joint 4. By applying the equations of equilibrium ¥~ Fy = 0 and 3" Fy = 0, we obtain
A =12 kN 4 =48 kN
Member 48. Considering the equilibrium of member 4 B, we obtain
B — _12kN B = _48kN M= _60kN.m
Joint B. Applying the three equilibrium equations, we obtain
BEE_12kN B _48kN M —60kN.m

Member B
+—=Fr=0 Cf=-12kN
+1 3 Fr=0
48— 12(4) + CEE =0 CEF=0
+LE Me=0
60 —12(4)(2) +12(3) =0 Checks

Joint C. Considering the equilibrium of joint C, we determine
CEP=12kN C"=0
Member CD.
+—= T Fr=0 D"=_12kN
+ 1T EFr=0
—12{4)+ DFF =0 DE® =48 kN
+0FMy=0
— 123+ 12+ M =0 MT =—60kN-m
Joint . Applying the three equilibrium eguations, we obtain
DI =12k DMfFf=—d48kN MJF=60kN-m
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Member DE.
+—=FTF=0 E=-12kN
+1TFr=0 EJF=48kN

+( o Me=0
0 —12(5) =0 Checks
Joint E.
+EF=0 -—12+12=0 Checks
1) 48 — 48 =0 Checks

Distributed Loads on Incined Members BC and CD. Asthe 1 2-kN/m snow loading 1s speafied per honzoninl meter, 1t 1s
necessary to resolve it into components parallel and perpendicular to the dimctions of members 8C and CD. Consider, for
example, member BC, asshown in Fig. 5.25(d). The total vertical load acting on this memberis (12kN/m)(4m] = 48 kN.
Dividing this total vertical load by the length of the member, we obtain the intensity of the vertical distributed load per
meter along the inclined length of the member as 48 /5 = 9.6 kN/m. The components of this vertical distributed load in the
directions paralld and perpendicular to the axis of the member are [3/5)(9.6) = 5.76 kN/m and (4/5)(9.6) = 7.68 kN/m,
respectively, as shown in Fig. 5.25(d]. The distnbuted loading for member CD is computed smmilarly and is shown in
Fig. 5.25(c).

Shear and Bending Moment Disgrams. See Fig. 5.25(f ) and [g). Ans.
Axial Forre Diagrams. The equations for axal force in the members of the frame are:

Member AR O = —48

Member BC (0= —384 + 5.76x

Member O 0= —-96 — 5.76x

Member DE (= —48
The axial foree diagrams are shown in Fig. 5.25(h). Ans.
Qualitative Deflected Shape. Sce Fig. 5.25(i) Ans.
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