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r < 3 thestructure is statically unstable externally

r=3 the structure is statically determinate externally
r >3 thestructure is statically indeterminate externally

r < 3 the structure is statically unstable externally
r=73 the structure is statically determinate externally

r >3 the structure is statically indeterminate externally
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m+r=1 [ ] m+r=l
{a) Statically Dederminate (b} Unstahle {c) Staiically Indeterminate (i = 4}

=16 j=10 r=3
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m=10 j=7 r=4
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m=19 j=12 r=45
m+r=2y

ik} Statically Determinate
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For an externally indeterminate structure, the degree of external in-
determinacy is expressed as

k=r—=(3+4e) (3.10)

Alternative Approach  An alternative approach that can be used for de-
termining the static instability, determinacy, and indeterminacy of inter-
nally unstable structures is as follows:

1. Count the total number of support reactions, r.

2. Count the total number of intzernal forces, [, that can be trans-
mitted through the internal hinges and the internal rollers of
the structure. Recall that an infernal hinge can transmit two
force components, and an internal roller can transmit one force
componant.

3. Determine the total number of unknowns, r 4 .

4. Count the number of rigid members or portions, n,, contained
in the structure.

5. Because each of the individual rigid portions or members of the
structure must be in equilibrium under the action of applied
loads, reactions, and/or internal forces, each member must sat-
isfy the three equations of equilibdum (3" F, =0, 3 F, =10,
and 57 M =0). Thus, the total mumber of equations available
for the entire structure is 3n,.

6. Determine whether the structure is statically unstable, determi-
nate, or indeterminate by comparing the total mumber of un-
knowns, r+4 i, to the total number of equations. If

re fi < 3ny  the structore is statically
unstable externally
i = 3m  the struchure is statically
determinate externally
i = 3me  the struchure is statically
indeterminate externally

(3.11)

For ndeterminate structures, the degree of external indeterminacy
is given by
fe=(r+f)-3n (3.12)

Applyving this alternative procedure to the structure of Fig 3.13(b), wecan
see that for this strocture, r = 4, ) = 2, and n, = 2. As the total mumber of
unknowns (r 4 f; = 6) isequal to the total number of equations (3n, = 6),
the structure is statically determinate externally. Simikarly, for the structure of
Fig. 315, r =3, ji =1, and n, = 2. Since r 4+ f§ = 3n,, this structure & also
statically determinate externally.

The criteria for the static determinacy and indeterminacy as de-
scribed in Egs. (3.9) and (3.11), although necessary, are not sufficient
because they cannot account for the possibility of geometric instability.
To avoid geometric instability, the internally unstable structures, like the
internally stable structures considered previously, must be supported by
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" Internal roller Imternal roller
r=3

Two equations of condition: EFA¥ =0 or ZF P =0
IMAE=0 or IMFC=0

and
SMA*=0 or M =0

These wo equations of condition can be used in conjunction with the three
equilibrium equations o determine the five unknown external reactions.
Thus, the srucmre of Fig. 3.15 is statically determinate externally.

From the forepoing discussion, we ean conclude that if there are &,
equations of condition (one equation for each internal hinge and two
equations for each intemal roller) for an internally unstable strocmre,
which is supported by rexternal reactions, then if

r<34e. the structure is statically
unstable extemally

r=3+4e. the structure is statically
determinate externally

r>3+4¢. the structure is statically
indeterminate externally

(39)
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AG. 317

Alternative Method. =4, n. =3, r+ fi=54+4=19 and In, = 3(3) =9 Because r+ f; = 3n,, the beam is staticaly
determinate externally. Checks

{e) This is an mternally unstable structur with r = 6 and e = 3. Since r = 3 + ¢., the structure is statically deter-
minate externally. Ans.

Alternative Method. =6, n =4, r+ fi=6+6=12 and 3n = 3{4) = 12 Becausc r+ fi= 3n,, the sgructure is
statically determinate externally. Checks

{f) This frame is internally unstable with r =4 and & = 1. Since r = 3 4+ ¢., the frame is statically determinate
externally. Ans.

Alternative Method. ;=2 n, =2, r+ fi=4+2 =6, and 3n, = 3(2) = 6. Since r+ f; = 3n,, the frame iz statically
determinate externally. Checks

(g) This frame i mternally unstable with r = 6 and ¢, = 3. Since r= 3+ ¢, the frame is sttically determinate
externally. Ans.

Alternative Method. f;=6 n, =4, r+ i=6+6=12, and 3n, = 3(4) = 12. Because r + f; = 3n,, the frame is
statically determinate externally. Checks
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Classify each of the structures shown i Fig. 3.17 as externally unstable, statically determinate, or statically m-
determinate, If the structure is statically indeterminate externally, then determine the degree of external indeterminacy.

Solution
{a) This beam is micrmnally swhle withr = 5 > 3. Therefore, it is smocally mdeterminate externally with the degree
of external indeterminacy of

k=r—3=5-3=2 Ans.

(b) This beam is mternally mstuble. It is composed of two rigid members 48 and BC connected by an internal
thimge at B, For this beam, r = 6 and e = 1, Since r > 3 + &, the structure 1s statically indeterminate externally with the
degree of extemal indeterminacy of

=r—{3+e)=06—-(3+1)=2 Ans.

Alermative Method, i=2 n, =2 r+ fi=6+2=§ and 3n, = 3{2) = 6. As r+ fi > In,, the beam is statically -
determinate externally, with

=(r+fl—3 =8-6=1 Checks

{e) This structure is internally unstable with r =4 and &, = 2. Since r < 3 + ¢, the structure is statically unstable
externally, This can be verified from the figure, which shows that the member 8C is not restrained agamst movement in

the horizontal direction, Ans.
Alternative Method, fi=1, =2, r+ fi=4+1 =35, and In, = 6. Since r + fi < 3, the structure 5 statically un-
stable externally. Checks
(d) This beam is internally unstable with r = 5 and e: = 2. Because r= 3 + &, the beam is statically determinate
externally, Ans.
vt
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Determine the forces in members FF, HY, and HK of the K truss shown in Fig. 4.24{a) by the method of sactions.

Li=6m—-6m— y
23N —er I _-.1 I
respectively, because the lines of action of three of the four unknowns pass through these points. We will, therefore, first
compute Fux by considering section bb and then use section aa to determine Fer and Fuy. S0 kN
Section b, Using Fig. 4.24(b), we write [oet=t
el Al
+LE M =0 —25(8) — Fe(12) =10
kN

Fux = —1667 kN

Faye = 16.67 kN (C) Ans.
Section aa. The free-body diagram of the portion JKNL of the truss above section aa is shown in Fig. 4.24(¢), To SOEN —= ] ¥
determine Fgy, we sum moments about F, which is the pomt of intersection of the lines of action of Fg and Fep.
Thus,

+L o Me=0 —23(16) — 30(8) + 16.67(12) —%FHJ-I:E] —%Fm('ﬁ] =1 ¥
Frar = —62.5 kN
{n)
Fyp = 62.5 kN (C) Ans.
2% L s N
By summing forces in the horizontal direction, we obtain
1 3
+—|-Eﬂ =1 25 4+ 50 —;Fr;—g(ﬂ.j]:ﬂ 25 E. M j'll\r
Fy = 62.5kN (T) Ans. 50l .l - " K
3 3
(hecking Computations. Finally, to check our cakulations, we apply an altermative equilibrium equation, which n- 4 4
volves the three member forces determined by the analysis, Using Fig. 4.24(c), we write 50 ;, ) e £ ! 5 5 16.67
Fy Fie I /
+C M, = ~25(8) - (62.5)(6) + 3(623)(6) + 1667(12) =0 Checks /' Frr Fuus
L Frg F
FG. 4.4 (hi Section b (c) Section aa
Solution

From Fig. 4.24{a), we can observe that the honzontal section aa passing through the three members of interest, FJ, HJ,
and MK, also cuts an additional member FI, thereby releasing four unknowns, which cannot be determined by three
equations of equilibrium. Trusses such as the one being conaderad here with the members arranged in the form of the
ketter K can be analyzed by a section curved around the middle joint, like section bb shown in Fig. 4 24(a). To avoid the
calculation of support reactions, we will use the upper portion JANL of the trussabove ssction bb for analysis. The free-
hody dingram of this portion & shown m Fig. 4.24(b). It can be seen that although section bb has cut four members,
FI.Ir, JK, and HK, forces in members £ and HK can be determined by summing moments about points K and 1,

v s
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Solution
Static Determinacy. The truss has 11 members and 7 jonts and is supported by 3 reactions, Since m 4+ r = 2j and the
reactions and the members of the truss are properly arranged, it is statically determinate.

The slopes of the inclined members, as determined from the dimenaons of the truss, are shown m Fig. 4.25(a).

Reasctions. The mactions at supports 4 and B, as computed by applying the three equilibrium equations to the free-body
diagram of the entire truss (Fig. 4.25(b)), arc

A=25ke A, =5kl B =35k{

Section aa. Since a joint with two or fewer unknown forces camnot be found to start the method of joints, we first cal-
culate Fyy by using section aa, as shown in Fig. 4.25(a).

The free-body diagram of the portion of the truss on the left side of secton aa 1s shown n Fig 4.250c). We de-
termine Fyg by summing moments about point (7, the point of mtersection of the lines of action of Fiy and F;.

+CT Mg=0  —25(32) — 5(16) + 10(16) + Fus(32) = 0
Ep=225k(T) Ans.

With F,g now known, the method of joints can be started either at joint 4, or at joint B, since both of thes joints have
only two unknowns sach. We begin with joint 4.

Joint 4. The free-body diagram of joint A is shown in Fig. 4.25(d).

1 3
+—rEF,=l}l —.'5+ZZ.5+EEC+EE¢_9=0

2 4
+1ELF =0 S+?;Eu:+§ﬁn=ﬂ

Solving these equations simultancously, we obtain
Ec=-279k and Ep=25k
Eir =2195k (C) Ans.
Ep=25k(T) Ans.

Jomts Cand £ Focusing our attention on joints C and 2 m Fig. 4.25(b), and by satisfying the two equilibrium equa-
tons by inspection at cach of these joints, we determine

Fre=2795k (C) Ans.
Fep =10k (C) Ans.
Fpe =262k (T) Ans.

Jomnt . Mext, we consider the equilibrium of joint & (sce Fig. 4.25(c)).

1 1 1
+ =% F, =0 54 —(2795) - —=(W62)+ ——=Fpz + —=Fz =10
z 1.-"5( ) l.r"n': ) VIT T E
+1TE =0  —40+-2(2795 - — (62 - Feo— LEu=0
iy Vi JI° VIT Y
ot pe]
Solving these equations, we obtain

Fea=—2062k and Fre=—1677k
Faz = 2062 k (C)
Frz = 16.77 k (C)

Fag=25k (C)
Fep =10k (T)
Far = 1677 k (C)

Determine the foroe in cach member of the compound truss shown o Fig. 4.25(a).

F';T_ Ein
=
Pk a 25

3 5

() Saction gz {d)
AG. 4.25
Ang.
Ans.

Joints E and F. Finally, by considering the equilibium, by inspection, of joints £ and F (see Fig. 4.25(b)), we obtain

connnund
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Determine the foree in each member of the Fink truss shown i Fig, 4.26(a),

— Bt —— R fi — sn—l—sn»—i—-sﬁ—1—3ﬁ— Bfi ——8f —

2391

a |12k

12k l 12k
il
© id) ie) T |
AG. 426 (contd.)
12k 6

]
Solution :
The Fink truss shown in Fig. 4. 26(a) isa compound truss formed by connecting two simple trusses, 4CE and DFL, by a !
common joint L and a member CD. 4 i
Static Determinacy. The truss contains 27 members and 15 joints and is supported by 3 reactions. Because m + r = 2j and — 8 c ,:; o E -
the reactions and the members of the truss are properly armnged, it is statically determinate, |—IDI’r _|.._ 10 it __|._|2ﬁ ._t._u“ ""-l-w'fl _i_..wn _|
Reactions. The reactions at supports 4 and F of the truss, as computed by applying the three equations of equilibrinom {a]
to the free-body diagram of the entire truss (Fig. 4.26(b]), are

{ Line of symmetry

Ay=0 A, =42kf Fy=42kf

Joint 4. The method of joints can now be started at joint 4, which has only two unknown forces, Fue and Fip, acting on
it. By inspection of the forces acting at this joint [see Fig. 4.26(b]), we obtain the following:
Ey =9391 k (C) Ans.
Fig==84k (T) Ans.
Jomt L The free-body diagram of joint [ 1s shown in Fig. 4.26(c). Member BJ 1s perpendicular to members A8 and 1,
which are collinear, so the computation of member forces can be simplified by using an ¥ axis in the direction of the
collnear members, as shown in Fig. 4.26(c).

2
+5 T F=0 ——5(121 —Fg =0 AG. 4.26

Fag ——1073k comgra
Fa = 1072k (C) Ans.
+/TF=0 9391 (12} 4 Fy=0
v
Frr = 8854k

Fiy =885 k (C) Ans.
Jomt B Considening the equilibrium of jont £, we obtain (sce Fig. 4.26(b)) the follewing:

+1TF, =0 _is(m.n] +§Fﬂ=u
Far = 12k (T) Ans.
1 3
+ =3 =0 —Ed+?g[:ll].1‘3]+g(12] +Fec =0
Fgr =72k (T) Ans.

comnmued

i gio A ] ‘_.i.f!,,:_,h,-__.-n-fm,'r_-b?ﬂ;_,fbii-.- ”




Section @z, Since at each of the next two joints, C and J, there are three unknowns (Fiop, Frop, and F-; at joint C and
Frs, Fer, and Fry at joint J), we calculate Frop by using section aq, as shown in Fig. 4.26(a). (If we moved to joint F
and started computng member forces from that end of the truss, we would encounter similar difficulties at jomts D
and N.)

The free-body dingram of the portion of the truss on the left side of section @z is shown in Fig. 4.26(d). We de-
terming oy by summing moments about point L, the point of mtersection of the lines of action of F; and F.

+CT M =0 —42(32) +12(24) +12(16) + 12(8) + Fp(16) =0
Fp=48k (T) Ans.

Jomt O, With Fop now kmown, there are only two unknowns, Fo; and Fop, at joint O, These forces can be determined
by applying the two equations of equilibium to the free body of joint C, as shown in Fig. 4.26(c).

2 4
+1LF =0 EF:r+EFm=ﬂ

1 3
+ =3 FE =0 —?2+4-E—EF|:r +E.FEE=':|

Solving these equations simuliansously, we obtun
Fry=-214Tk and Fz=Mk

Fry = 2147 k (C) Ans.
Fra=Mk(T) Ans.
Jomts J, K, and (o Simiarly, by successively considering the equilibrium of joints J, K, and &, in that order, we de-
termine the following:
Fe =83.18 k (C) Ans.
Far =12k (T) Ans.
Fir =T7.81 k (C) Ans.
Fae = 1073 k (C) Ans.
Fa =3k (T) Ans.

Symmetry. Since the geometry of the truss and the applied loading are symmetrical about the center hne of the truss
(shown in Fig. 4.26(b)), its member fomes will also be symmetrical with respect to the line of symmetry. It is, therefore,
sufficient to determine member forces 1n only one-half of the truss, The member forees determined here for the left half
of the truss are shown in Fig. 4.26(b). The forces in the right half can be obtained from the consideration of symmetry;
for example, the force in member MW i1s equal to that in member JK, and so forth. The reader 1s urged to venify this by
computing a few member forces in the right half of the truss. Ans.
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